41 research outputs found

    Retrievals of Aerosol Optical and Microphysical Properties from Imaging Polar Nephelometer Scattering Measurements

    Get PDF
    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs

    Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator

    Get PDF
    The Jing Ltd. miniature combustion aerosol standard (Mini- CAST) soot generator is a portable, commercially available burner that is widely used for laboratory measurements of soot processes. While many studies have used the Mini-CAST to generate soot with known size, concentration, and organic carbon fraction under a single or few conditions, there has been no systematic study of the burner operation over a wide range of operating conditions. Here, we present a comprehensive characterization of the microphysical, chemical, morphological, and hygroscopic properties of Mini- CAST soot over the full range of oxidation air and mixing N2 flow rates. Very fuel-rich and fuel-lean flame conditions are found to produce organic-dominated soot with mode diameters of 10–60 nm, and the highest particle number concentrations are produced under fuel-rich conditions. The lowest organic fraction and largest diameter soot (70–130 nm) occur under slightly fuel-lean conditions. Moving from fuel-rich to fuel-lean conditions also increases the O:C ratio of the soot coatings from ~0.05 to ~0.25, which causes a small fraction of the particles to act as cloud condensation nuclei near the Kelvin limit (κ ~ 0–10−3). Comparison of these property ranges to those reported in the literature for aircraft and diesel engine soots indicates that the Mini-CAST soot is similar to real-world primary soot particles, which lends itself to a variety of process-based soot studies. The trends in soot properties uncovered here will guide selection of burner operating conditions to achieve optimum soot properties that are most relevant to such studies

    Fine particle pH and sensitivity to NH3 and HNO3 over summertime South Korea during KORUS-AQ

    Get PDF
    Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43 ± 0.68) and aerosol liquid water content determined were then used to determine the chemical regime of the inorganic fraction of particulate matter (PM) sensitivity to ammonia and nitrate availability. We found that the aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels are further promoted because dry deposition velocity is low and allows its accumulation in the boundary layer. Because of this, HNO3 reductions achieved by NOx controls prove to be the most effective approach for all conditions examined, and that NH3 emissions can only partially affect PM reduction for the specific season and region. Despite the benefits of controlling PM formation to reduce ammonium-nitrate aerosol and PM mass, changes in the acidity domain can significantly affect other processes and sources of aerosol toxicity (such as e.g., solubilization of Fe, Cu and other metals) as well as the deposition patterns of these trace species and reactive nitrate

    Modeling NH4NO3 over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign

    Get PDF
    The San Joaquin Valley (SJV) of California experiences high concentrations of PM2.5 (particulate matter with aerodynamic diameter 2.5 m) during episodes of meteorological stagnation in winter. Modeling PM2.5 NH4NO3 during these episodes is challenging because it involves simulating meteorology in complex terrain under low wind speed and vertically stratified conditions, representing complex pollutant emissions distributions, and simulating daytime and nighttime chemistry that can be influenced by the mixing of urban and rural air masses. A rich dataset of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign in SJV in January and February 2013. Here, NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model version 5.1, predictions are evaluated with the DISCOVER-AQ dataset, and process analysis modeling is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-h average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agreed well with measurements in Fresno, although partitioning of total nitrate to HNO3 was sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and the spatial allocation of NH3 emissions could benefit from additional work, especially near Hanford. HNO3 production via daytime and nighttime pathways is reasonably consistent with the conceptual model of NH4NO3 formation in SJV, and production peaked aloft between about 160 and 240 m in the model. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease

    Biofuel Blending Reduces Aircraft Engine Particle Emissions at Cruise Conditions

    Get PDF
    Aviation aerosol emissions have a disproportionately large climatic impact because they are emitted high in the relatively pristine upper troposphere where they can form linear contrails and influence cirrus clouds. Research aircraft from NASA, DLR, and NRC Canada made airborne measurements of gaseous and aerosol composition and contrail microphysical properties behind the NASA DC-8 aircraft at cruise altitudes. The DC-8 CFM-56-2C engines burned traditional medium-sulfur Jet A fuel as well as a low-sulfur Jet A fuel and a 50:50 biofuel blend. Substantial, two-to-three-fold emissions reductions are found for both particle number and mass emissions across the range of cruise thrust operating conditions. These observations provide direct and compelling evidence for the beneficial impacts of biojet fuel blending under real-world conditions

    Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ

    Get PDF
    Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∼1–3 µg sm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∼140 µgsm−3ppmv−1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 µgsm−3ppmv−1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 µg sm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore