135 research outputs found

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal

    Identifying the transporters of different flavonoids in plants

    Get PDF
    We recently identified a new component of flavonoid transport pathways in Arabidopsis. The MATE protein FFT (Flower Flavonoid Transporter) is primarily found in guard cells and seedling roots, and mutation of the transporter results in floral and growth phenotypes. The nature of FFT’s substrate requires further exploration but our data suggest that it is a kaempferol diglucoside. Here we discuss potential partner H+-ATPases and possible redundancy among the close homologues within the large Arabidopsis MATE family

    SpotCard: an optical mark recognition tool to improve field data collection speed and accuracy.

    Get PDF
    BACKGROUND: When taking photographs of plants in the field, it is often necessary to record additional information such as sample number, biological replicate number and subspecies. Manual methods of recording such information are slow, often involve laborious transcription from hand-written notes or the need to have a laptop or tablet on site, and present a risk by separating written data capture from image capture. Existing tools for field data capture focus on recording information rather than capturing pictures of plants. RESULTS: We present SpotCard, a tool comprising two macros. The first can be used to create a template for small, reusable cards for use when photographing plants. Information can be encoded on these cards in a human- and machine-readable form, allowing the user to swiftly make annotations before taking the photograph. The second part of the tool automatically reads the annotations from the image and tabulates them in a CSV file, along with picture date, time and GPS coordinates. The SpotCard also provides a convenient scale bar and coordinate location within the image for the flower itself, enabling automated measurement of floral traits such as area and perimeter. CONCLUSIONS: This tool is shown to read annotations with a high degree of accuracy and at a speed greatly faster than manual transcription. It includes the ability to read the date and time of the photograph, as well as GPS location. It is an open-source ImageJ/Fiji macro and is available online. Its use requires no knowledge of the ImageJ macro coding language, and it is therefore well suited to all researchers taking pictures in the field

    The influence of pigmentation patterning on bumblebee foraging from flowers of <em>Antirrhinum majus</em>

    Get PDF
    Patterns of pigmentation overlying the petal vasculature are common in flowering plants and have been postulated to play a role in pollinator attraction. Previous studies report that such venation patterning is significantly more attractive to bee foragers in the field than ivory or white flowers without veins. To dissect the ways in which venation patterning of pigment can influence bumblebee behaviour, we investigated the response of flower-naïve individuals of Bombus terrestris to veined, ivory and red near-isogenic lines of Antirrhinum majus. We find that red venation shifts flower colour slightly, although the ivory background is the dominant colour. Bees were readily able to discriminate between ivory and veined flowers under differential conditioning but showed no innate preference when presented with a free choice of rewarding ivory and veined flowers. In contrast, both ivory and veined flowers were selected significantly more often than were red flowers. We conclude that advantages conferred by venation patterning might stem from bees learning of their use as nectar guides, rather than from any innate preference for striped flowers. © 2013 Springer-Verlag Berlin Heidelberg

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues.

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.European Research Council (ERC consolidator grant 279405) the Herchel Smith fund the Gatsby Charitable Foundation BBSRC grant BB/P001157/

    Analysing photonic structures in plants.

    Get PDF
    The outer layers of a range of plant tissues, including flower petals, leaves and fruits, exhibit an intriguing variation of microscopic structures. Some of these structures include ordered periodic multilayers and diffraction gratings that give rise to interesting optical appearances. The colour arising from such structures is generally brighter than pigment-based colour. Here, we describe the main types of photonic structures found in plants and discuss the experimental approaches that can be used to analyse them. These experimental approaches allow identification of the physical mechanisms producing structural colours with a high degree of confidence

    An Arabidopsis rhomboid protease has roles in the chloroplast and in flower development

    Get PDF
    Increasing numbers of cellular pathways are now recognized to be regulated via proteolytic processing events. The rhomboid family of serine proteases plays a pivotal role in a diverse range of pathways, activating and releasing proteins via regulated intramembrane proteolysis. The prototype rhomboid protease, rhomboid-1 in Drosophila, is the key activator of epidermal growth factor (EGF) receptor pathway signalling in the fly and thus affects multiple aspects of development. The role of the rhomboid family in plants is explored and another developmental phenotype, this time in a mutant of an Arabidopsis chloroplast-localized rhomboid, is reported here. It is confirmed by GFP-protein fusion that this protease is located in the envelope of chloroplasts and of chlorophyll-free plastids elsewhere in the plant. Mutant plants lacking this organellar rhomboid demonstrate reduced fertility, as documented previously with KOM—the one other Arabidopsis rhomboid mutant that has been reported in the literature—along with aberrant floral morphology

    Characterisation of the R2R3 Myb subgroup 9 family of transcription factors in tomato

    Get PDF
    Tomato (Solanum lycopersicum) has many epidermal cell outgrowths including conical petal cells and multiple types of trichomes. These include the anther-specific trichome mesh which holds the anthers connate. The R2R3 Myb Subgroup 9 family of transcription factors is involved in development of epidermal cell outgrowths throughout the angiosperms. No previous study has examined all members of this transcription factor family in a single species. All 7 R2R3 Myb Subgroup 9 genes were isolated from tomato. They were ectopically expressed in tobacco to assess their ability to induce epidermal cell outgrowth. Endogenous expression patterns were examined by semi-quantitative RT-PCR at different stages of floral development relative to the development of anther trichomes. We report variation in the degree of epidermal cell outgrowth produced in transgenic tobacco by each ectopically expressed gene. Based on expression profile and ectopic activity, SlMIXTA-2 is likely involved in the production of leaf trichomes. SlMIXTA-2 is expressed most strongly in the leaves, and not expressed in the floral tissue. SlMYB17-2 is the best candidate for the regulation of the anther trichome mesh. SlMYB17-2 is expressed strongly in the floral tissue and produces a clear phenotype of epidermal cell outgrowths when ectopically expressed in tobacco. Analysis of the phenotypes of transgenic plants ectopically expressing all 7 genes has revealed the different extent to which members of the same transcription factor subfamily can induce cellular outgrowth

    The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging.

    Get PDF
    Nectar is a common reward provided by plants for pollinators. More concentrated nectar is more rewarding, but also more viscous, and hence more time-consuming to drink. Consequently, theory predicts an optimum concentration for maximizing energy uptake rate, dependent on the mechanics of feeding. For social pollinators such as bumblebees, another important but little-studied aspect of foraging is nectar offloading upon return to the nest. Studying the bumblebee Bombus terrestris, we found that the relationship between viscosity (µ) and volumetric transfer rates (Q) of sucrose solutions differed between drinking and offloading. For drinking, Q ∝ µ-0.180, in good agreement with previous work. Although offloading was quicker than drinking, offloading rate decreased faster with viscosity, with Q ∝ µ-0.502, consistent with constraints imposed by fluid flow through a tube. The difference in mechanics between drinking and offloading nectar leads to a conflict in the optimum concentration for maximizing energy transfer rates. Building a model of foraging energetics, we show that including offloading lowers the maximum rate of energy return to the nest and reduces the concentration which maximizes this rate by around 3%. Using our model, we show that published values of preferred nectar sugar concentrations suggest that bumblebees maximize the overall energy return rather than the instantaneous energy uptake during drinking.This work was supported by a Biotechnology and Biological Sciences Research Council PhD Studentship under grant BB/J014540/1 to J.G.P
    corecore