4,058 research outputs found

    HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    Get PDF
    The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave

    A Two-Step Approach for Offset and Position Estimation from Pseudo-Ranges Applied to Multilateration Tracking

    Get PDF
    In multilateration tracking, an object, e.g., an airplane, emits a known reference signal, which is received by several base stations (sensors) located at known positions. The receiving times of the signal at the sensors correspond to the times of arrival (TOA) plus an unknown offset, because the emission time is unknown. Usually, for estimating the position of the object, the receiving times are converted to a larger number of time differences of arrival (TDOA) in order to eliminate the unknown offset. To avoid this conversion, the proposed approach directly uses the receiving times. This is achieved by 1. determining the optimal offset from the redundant measurements in closed form and 2. by considering a modified measurement equation. As a result, position estimation can be performed by optimal stochastic linearization

    The Clustering Of Galaxies Around Radio-Loud AGNs

    Full text link
    We examine the hypothesis that mergers and close encounters between galaxies can fuel AGNs by increasing the rate at which gas accretes towards the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the 6dFGS survey. We find that radio AGNs with more than 200 times the median radio power have, on average, more close (r<160 kpc) companions than their radio-quiet counterparts, suggestive that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is not a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.Comment: 12 pages, 6 figure

    Sensitivity of GPS and GLONASS orbits with respect to resonant geopotential parameters

    Get PDF
    The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellite's positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellite's orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earth's gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites - 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant term

    The 6dF Galaxy Survey: Dependence of halo occupation on stellar mass

    Full text link
    In this paper we study the stellar-mass dependence of galaxy clustering in the 6dF Galaxy Survey. The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the Halo Occupation Distribution (HOD) model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp)w_p(r_p). We find that the typical halo mass (M1M_1) as well as the satellite power law index (α\alpha) increase with stellar mass. This indicates, (1) that galaxies with higher stellar mass sit in more massive dark matter halos and (2) that these more massive dark matter halos accumulate satellites faster with growing mass compared to halos occupied by low stellar mass galaxies. Furthermore we find a relation between M1M_1 and the minimum dark matter halo mass (MminM_{\rm min}) of M1≈22 MminM_1 \approx 22\,M_{\rm min}, in agreement with similar findings for SDSS galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21% at Mstellar=2.6×1010h−2 M⊙M_{\rm stellar} = 2.6\times10^{10}h^{-2}\,M_{\odot} to 12% at Mstellar=5.4×1010h−2 M⊙M_{\rm stellar} = 5.4\times10^{10}h^{-2}\,M_{\odot} indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable crosscheck for these two different tools of studying the matter distribution in the Universe.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1104.2447 by other author

    Gaussian Filtering using State Decomposition Methods

    Get PDF
    State estimation for nonlinear systems generally requires approximations of the system or the probability densities, as the occurring prediction and filtering equations cannot be solved in closed form. For instance, Linear Regression Kalman Filters like the Unscented Kalman Filter or the considered Gaussian Filter propagate a small set of sample points through the system to approximate the posterior mean and covariance matrix. To reduce the number of sample points, special structures of the system and measurement equation can be taken into account. In this paper, two principles of system decomposition are considered and applied to the Gaussian Filter. One principle exploits that only a part of the state vector is directly observed by the measurement. The second principle separates the system equations into linear and nonlinear parts in order to merely approximate the nonlinear part of the state. The benefits of both decompositions are demonstrated on a real-world example

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)

    The Sliced Gaussian Mixture Filter with Adaptive State Decomposition Depending on Linearization Error

    Get PDF
    In this paper, a novel nonlinear/non-linear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlinearity of the model, the overall estimation problem is decomposed into a severely nonlinear and a slightly nonlinear part, which are processed by different estimation techniques. To further improve the efficiency of the estimator, an adaptive state decomposition algorithm is introduced that allows decomposition according to the linearization error for nonlinear system and measurement models. Simulations show that this approach has orders of magnitude less complexity compared to other state of the art estimators, while maintaining comparable estimation errors

    Clinical efficacy, radiographic and safety findings through 2 years of golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of the randomised, placebo-controlled GO-REVEAL study

    Get PDF
    Objectives: To assess long-term golimumab efficacy/safety in patients with active psoriatic arthritis (PsA).&lt;p&gt;&lt;/p&gt; Methods Adult PsA patients (&#8805;3 swollen, &#8805;3 tender joints, active psoriasis) were randomly assigned to subcutaneous injections of placebo, golimumab 50 mg or 100 mg every 4 weeks (q4wks) through week 20. All patients received golimumab 50 or 100 mg beginning week 24. Findings through 2 years are reported. Efficacy evaluations included &#8805;20% improvement in American College of Rheumatology (ACR20) response, good/moderate response in Disease Activity Scores incorporating 28 joints and C-reactive protein (DAS28-CRP), &#8805;75% improvement in Psoriasis Area and Severity Index (PASI75) and changes in PsA-modified Sharp/van der Heijde scores (SHS).&lt;p&gt;&lt;/p&gt; Results: Golimumab treatment through 2 years was effective in maintaining clinical response (response rates: ACR20 63%–70%, DAS28-CRP 77%–86%, PASI75 56%–72%) and inhibiting radiographic progression (mean change in PsA-modified SHS in golimumab-treated patients: −0.36), with no clear difference between doses. No new safety signals were identified through 2 years. With the study's tuberculosis screening and prophylactic measures, no patient developed active tuberculosis through 2 years.&lt;p&gt;&lt;/p&gt; Conclusions: Golimumab 50 and 100 mg for up to 2 years yielded sustained clinical and radiographic efficacy when administered to patients with active PsA. Increasing the golimumab dose from 50 to 100 mg q4wks added limited benefit. Golimumab safety through up to 2 years was consistent with other antitumour necrosis factor α agents used to treat PsA. Treatment of patients with latent tuberculosis identified at baseline appeared to be effective in inhibiting the development of active tuberculosis.&lt;p&gt;&lt;/p&gt
    • …
    corecore