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Abstract – State estimation for nonlinear systems gener-
ally requires approximations of the system or the probability
densities, as the occurring prediction and filtering equations
cannot be solved in closed form. For instance, Linear Re-
gression Kalman Filters like the Unscented Kalman Filter
or the considered Gaussian Filter propagate a small set of
sample points through the system to approximate the poste-
rior mean and covariance matrix. To reduce the number of
sample points, special structures of the system and measure-
ment equation can be taken into account. In this paper, two
principles of system decomposition are considered and ap-
plied to the Gaussian Filter. One principle exploits that only
a part of the state vector is directly observed by the measure-
ment. The second principle separates the system equations
into linear and nonlinear parts in order to merely approx-
imate the nonlinear part of the state. The benefits of both
decompositions are demonstrated on a real-world example.

Keywords: Estimation, tracking, filtering, Rao-Blackwell-
ization, Linear Regression Kalman Filter.

1 Introduction
Estimation is applied to problems, where the state of a dy-
namical system has to be calculated based on noisy observa-
tions and where uncertainties in modeling have to be taken
into account. In case of linear systems with additive Gaus-
sian noise, the well-known Kalman Filter provides optimal
estimates of the system state in form of first and second mo-
ments. All required calculations can be performed in closed
form. The same is not true when nonlinearities arise in
the measurement and system equation. Here, approxima-
tion has to be applied, where two different approximation
approaches can be found in literature. The first one relies
on approximating the system equations as done by the Ex-
tended Kalman Filter. In the second approach, the probabil-
ity density representing the state estimate is approximated
instead. Here, sample-based approaches like Particle Filters
[1] are common. A drawback of Particle Filters is that sam-
pling is performed randomly and thus, many particles have
to be used to achieve accurate results. Moreover, Particle

Filters suffer from the curse of dimensionality, i.e., the num-
ber of particles increases exponentially with the number of
dimensions [4].

Another class of sample-based estimators are Linear Re-
gression Kalman Filters (LRKFs), like the well-known Un-
scented Kalman Filter (UKF) [6], the Divided Difference
Filter [10], the Central Difference Filter [13], or the Gaus-
sian Filter [5]. Here, it is assumed that the state estimate can
be sufficiently characterized by its first two moments, i.e.,
mean and covariance matrix. The regression points (sample
points) for exactly capturing these moments can be easily
determined in a deterministic fashion. Propagating the re-
gression points through the nonlinear system equations and
calculating the first two moments of the posterior estimate
implicitly linearizes the nonlinear equations. For this pro-
cedure, only a small number of regression points is required
and the number of regression points grows only linearly with
the dimension of the state space.

In this paper, the latest LRKF, the so-called Gaussian Fil-
ter introduced in [5], is extended in such a way that the num-
ber of regression points can be reduced without a noticeable
effect on the estimation quality. For this purpose, two differ-
ent approaches for state decomposition are discussed. The
first one relies on Rao-Blackwellization [14], which is often
applied to Particle Filters for attenuating the curse of dimen-
sionality and which has been firstly applied to the unscaled
version of the UKF in [9]. Here, the equations are sepa-
rated into a linear and nonlinear substructure, where only
the nonlinear part is processed in an approximate fashion.

The second decomposition is described in [8] for the
Kalman Filter. Transferred to LRKFs, only the directly ob-
served state needs to be represented by means of regression
points and updated with the current measurement. Based on
the correlation between the observed and the indirectly ob-
served part, the indirectly observed state can be updated af-
ter the filter step without further approximations. Although
both approaches are derived for the Gaussian Filter, they can
be directly applied to any estimator belonging to the class of
LRKFs.
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In Sec. 2, a brief problem formulation is given. The con-
sidered Gaussian Filter is explained in Sec. 3. Both decom-
position approaches are content of Sec. 4, while in Sec. 5,
the estimator equations for both decompositions are derived.
In Sec. 6, the example application employed for simula-
tions and experiments is introduced. Here, tracking an ob-
ject based on reference signals for a large-scale telepresence
scenario [12] is considered. Furthermore, a mathematical
formulation of the considered example is given. In Sec. 7,
the decomposed case and the full state case are compared
in a simulation and an experiment. The paper closes with
conclusions.

2 Problem Formulation
A nonlinear discrete-time dynamic systems is given by

xk+1 = ak
(
xk, uk,wk

)
,

y
k

= hk
(
xk,vk

)
,

where the functions ak(·) and hk(·) are known. The vector
xk is the state of the system, y

k
is the measurement vec-

tor, and uk is a known system input at the discrete time k.
The measurement and process noise are characterized by vk
and wk, respectively. Based on the measurements y

k
, the

density of the system state xk has to be estimated by using
filtering and prediction techniques.

Filtering and prediction for nonlinear systems typically
cannot be realized in closed form. To achieve an efficient
estimation scheme, the exact density or the system equa-
tions have to be approximated in an adequate manner. If the
approximation is based on the density, the number of param-
eters, i.e., the number of regression or sample points1, for
approximating the state density has to be constant for effi-
cient state estimation. Furthermore, the approximation qual-
ity should be adjustable in order to improve the estimation
accuracy if required.

In many cases, however, parts of the estimation problem
can be solved in closed form. Hence, only a part of the
density has to be represented by a set of regression points.
By exploiting the structure of the underlying system, several
decomposition methods can be applied for this purpose.

3 The Gaussian Filter
In contrast to most of the LRKFs like the famous UKF [6],
the Gaussian Filter [5] considered in this paper allows vary-
ing the number of sample points. In doing so, more informa-
tion of the nonlinear system model is captured by increasing
the number of sample points and thus, one can trade estima-
tion quality for computational demand. Moreover, informa-
tion of higher-order moments can be explicitly incorporated
into the estimation process. But still, as typical for LRKFs,
the number of regression points grows only linearly with the
dimension of the state space.

1Throughout this paper, the terms regression points and sample points
are used interchangeably.

D µ1 µ2 µ3

3 -1.2247 - -
5 -1.4795 -0.5578 -
7 -1.6346 -0.8275 -0.3788

Table 1: Sample positions for several numbers of samples.

The determination of the sample points for the Gaussian
Filter relies on efficiently solving an optimization problem,
where a certain distance measure between the Gaussian den-
sity representing the state estimate and the Dirac mixture
density representing the sample points is minimized. An ad-
ditional constraint ensures that mean and covariance matrix
of the state are captured exactly. In order to calculate the pa-
rameters, i.e., the weights and the positions of the regression
points, a two step procedure is employed.

In the computationally demanding first step, which can
be performed off-line, the samples for an univariate stan-
dard Gaussian density are calculated [5]. In this paper, the
number of sample pointsD is assumed to be odd, because in
this case one sample point is always located at the mean. In
Tab. 1, the sample points with negative positions for various
numbers of samples D are given. The mean point as well as
the positive positions are calculated according to

µD+1
2

= 0, µi = −µD+1−i for i = D+3
2 , . . . , D .

In the second step, for on-line approximating an
arbitrary N -dimensional Gaussian density f (x) =
N
(
x− µx,Cx,x

)
, N sets of D sample points are placed

along the N coordinate axes. By means of affine opera-
tions, these sample points are transformed for exactly cap-
turing the mean µx and the covariance matrix Cx,x. The
transformed sample points are calculated via

µx
i

= µx + V ·
√

D · Si for i = 1, . . . , L , (1)

where V and D is the matrix of eigenvectors and diagonal
matrix of eigenvalues, respectively, with Cx,x = V·D·(V)T.
Furthermore, L = N · (D − 1) + 1 is the total number of
sample points, Si is the i-th column of the matrix

S =
[
1 · µD+1

2
IN,N ⊗

[
µ1, . . . , µD−1

2
, µD+3

2
, . . . , µD

]]
︸︷︷︸
=0

and ⊗ is the Kronecker product.
For calculating the mean µx by means of set of sample

points µx
i

, the same sample weight

ω = 1
L (2)

is used for all sample points. A different weight is re-
quired for ensuring that the sample covariance matrix co-
incides with given covariance matrix Cx,x. Here, the weight
ωs = 1/D has to be used instead of ω, (2). This is shown in
the following.



Proof. To prove that the weight for calculating the sam-
ple covariance matrix has to be different, the sample co-
variance matrix for the N -dimensional Gaussian density is
considered

L∑
i=1

ωs ·
(
µx − µx

i

)
·
(
µx − µx

i

)T
≡ Cx,x .

Using (1) results in

L∑
i=1

ωs ·
(

V ·
√

D · Si
)
·
(

V ·
√

D · Si
)T
≡ Cx,x

(
V
√

D
)( L∑

i=1

ωs · Si · (Si)T︸ ︷︷ ︸
(µx

i )2·IN,N

)(
V
√

D
)T
≡ Cx,x .

The sum has to be equal to one so that the sample covariance
matrix corresponds to the given covariance matrix. Further-
more, the sample points are point-symmetric regarding to
the mean of the Gaussian density, which results in

L∑
i=1

ωs · (µxi )2 ≡ 1 and

D−1
2∑
i=1

ωs · 2 · (µxi )2 ≡ 1 .

From [5], one nonlinear equation from the optimization
problem is given by

D−1
2∑
i=1

(µxi )
2 − D

2 = 0 .

Based on this relationship, the weight must be ωs = 1
D .

4 Decomposition Methods
4.1 Case I: directly observed, indirectly ob-

served
Often, only a part of the state is observed through the mea-
surement model. Based on stochastic dependency, the indi-
rectly observed part is updated. The filter step

f(x|y) =
f(y|xo)f(x)

f(y)

can be written in the from

f(x|y) = f(xu|xo) f(y|xo)f(xo)

f(y)

= f(xu|xo)f(xo|y) ,

where the state vector is decomposed into an observed and
an indirectly observed part

x =
[
xo

xu

]
.

The measurement equation can be linear or nonlinear. In the
nonlinear case

y = h (xo,v) ,

the directly observed state xo is estimated by using a Linear
Regression Kalman Filter and after that the indirectly ob-
served state is updated. In the Linear Regression Kalman
Filter, the state vector x is Gaussian distributed with mean
and covariance matrix

µx =
[
µo

µu

]
, Cx,x =

[
Co,o Co,u

Cu,o Cu,u
]
.

To update the indirectly observed state, the estimated mean
µo
e

and estimated covariance matrix Co,oe of the density
f(xo|y) are used. According to [8], the mean vector of the
indirectly observed state is updated by

µu
e

= µu
p

+ L ·
(
µo
e
− µo

p

)
, (3)

the cross-covariance matrix Cu,oe and the covariance matrix
Cu,ue are calculated according to

Cu,oe = L · Co,oe and (4)

Cu,ue = Cu,up − L ·
(
Co,op − Co,oe

)
· (L)T

, (5)

with the matrix L

L = Cu,op ·
(
Co,op

)−1
.

4.2 Case II: Linear, Nonlinear
Similar to [14], [9], and [7], conditionally linear models

y = g (xn) + H (xn) · xl

are considered. For the Gaussian Filter, the joint density
f
(
x, y
)

has to be approximated by a multivariate Gaussian
density, where the joint density is

f
(
x, y
)

= δ
(
y − g (xn) + H (xn) · xl

)
· f
(
xn, xl

)
.

The state is decomposed into a nonlinear and linear part

x =
[
xn

xl

]
and the density of the state is Gaussian distributed with mean
and covariance matrix

µx =
[
µn

µl

]
, Cx,x =

[
Cn,n Cn,l

Cl,n Cl,l

]
.

The density of the state is separated by using Bayes’ law

f
(
xn, xl

)
= f

(
xl|xn

)
· f (xn) .

The conditional density is given by

f
(
xl|xn

)
= N

(
xl − µ (xn) ,Cl|n

)
with mean and covariance matrix

µ (xn) = µl + Cl,n · (Cn,n)−1 ·
(
xn − µn

)
Cl|n = Cl,l − Cl,n · (Cn,n)−1 · Cn,l .



The density for the nonlinear part f (xn) is approximated
with a Dirac mixture density based on the deterministic
sampling scheme from Sec. 3

f (xn) ≈ f̃
(
xn, η

)
=

L∑
i=1

ω · δ
(
xn − µn

i

)
,

with L = N · (D − 1) + 1. The approximated joint density
f̃
(
x, y
)

is given by

f̃
(
x, y
)

=δ
(
y − g (xn) + H (xn) · xl

)
·

· N
(
xl − µ (xn) ,Cl|n

)
·

·
L∑
i=1

ω · δ
(
xn − µn

i

)
.

For the Gaussian Filter, the joint density is approximated
with a Gaussian density according to

f̃
(
x, y
)
≈ N

( [
x
y

]
−
[
µx

µy

]
,

[
Cx,x Cx,y

Cy,x Cy,y
])

.

For calculating the mean µy , the covariance matrix Cy,y

and the cross-covariance matrix Cx,y first the approximated
density f̃

(
y
)

depending on y is calculated

f̃
(
y
)

=
∫
R

∫
R

f̃
(
x, y
)

dxldxn

=
L∑
i=1

ω

∫
δ
(
y − g

(
µn
i

)
+ H

(
µn
i

)
· xl
)
·

· N
(
xl − µ

(
µn
i

)
,Cl|n

)
dxl ,

which results in a Gaussian mixture

f̃
(
y
)

=
L∑
i=1

ω · N
(
y − µy

i
,Cy,yi

)
,

with mean and covariance matrix

µy
i

= g
(
µn
i

)
+ H

(
µn
i

)
· µ
(
µn
i

)
Cy,yi = H

(
µn
i

)
· Cl|n ·

(
H
(
µn
i

))T
.

The first and the second moments are approximated by

µy = ω ·
L∑
i=1

µy
i

and (6)

Cy,y =
L∑
i=1

(
ω · Cy,yi + ωs ·

(
µy
i
− µy

)
·
(
µy
i
− µy

)T
)

,

(7)
where the covariance matrix consists of the sample covari-
ance matrix and the covariance matrix of the linear part. The

cross-covariance matrix is approximated with

Cx,y =
∫
R

∫
R

(
x− µx

)
·
(
y − µy

)T · f̃
(
x, y
)

dxdy

=
L∑
i=1

(
ω ·
[

0

Cl|nH
(
µn
i

)T

]
+

+ ωs ·
([

µn
i

µ
(
µn
i

)]− µx) · (µy
i
− µy

)T
)

.

(8)

5 Estimation
5.1 Prediction Step
The information flow for the prediction step is shown Fig. 1.
First, the state has to be separated into a nonlinear and linear
part. Then, the system equation has to be converted into the
form

xk+1 = g
k
(xnk , uk,w

n
k ) + Hk (xnk , uk,w

n
k ) ·

[
xlk
wl
k

]
,

where the system state is augmented with the noise variable
Xk =

[
xT
k wT

k

]T
to consider additive and/or multiplica-

tive noise. The mean and covariance matrix is then given
by

µX
e

=
[(
µx
e

)T
0T

]T

, CX,Xe =
[

Cx,xe 0
0 Cw,wk

]
.

In the second step, the sample points for the nonlinear part
are calculated based on the scheme described in Sec. 3. For
calculating the predicted mean and covariance matrix (6)
and (7) are used, where the components of the Gaussian
Mixture are used.

5.2 Filter Step
In a first step, the directly observed and the indirectly ob-
served state are separated. Then the measurement equation
has to be converted, as in the prediction step and the sam-
ple points for the nonlinear state are determined. Then, the
covariance matrix (7), cross-covariance matrix (8), and the
predicted measurement (6) are calculated. Based on the ap-
proximated joint density, mean and covariance matrix are
estimated according to the conditional density f

(
x|ŷ
)

for a
given measurement ŷ

µo
e

= µo
p

+ Cx,y · (Cy,y)-1 ·
(
ŷ − µy

)
,

Co,oe = Co,op − Cx,y · (Cy,y)-1 · (Cx,y)T
.

After the mean and the covariance matrix of the directly ob-
served state is updated, the indirectly observed state is cal-
culated based on (3), (4) and (5). In Fig. 2, the information
flow for the filter step is shown.
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µX
e

, CX,Xe

linearnonlinear

µn
i

for i = 1, . . . , L

µX
i,p

, CX,Xi,p for i = 1, . . . , L

µX
p

, CX,Xp

Figure 1: Information flow of the prediction step.

6 Considered Example
The proposed algorithm is evaluated in a pose tracking sce-
nario. Based on the observation of two different sensors,
the translation and the rotation of an object is estimated.
The estimation for the pose with respect to a global coordi-
nate system is performed by known reference signals. Sev-
eral loudspeakers emit signals, which are received by mi-
crophones attached to the tracked object. The other type of
sensors measures the inertial angular velocity of the object
with respect to the object coordinate system.

The state vector consists of the translation, the rotation,
the translation velocity, and the angular velocity in three-
dimensional space. Based on the proposed principles, the
twelve-dimensional state vector is decomposed to reduce the
computational effort. In this example, the sensors only ob-
serve a part of the state vector. Furthermore, the kinematics
of the object is described by a nonlinear system equation,
which can be separated into a linear and a nonlinear part.

6.1 Prediction
The system model describes the evolution of the state over
time. For the considered example, the dynamic behavior of
the translation and the rotation has to be characterized in a
adequate manner.

6.1.1 Translation

For the translation, a constant velocity model is assumed.
This model is given by a linear differential equation, which
is represented in discrete time as

zk+1 = A · zk + w
z
k ,

Separation

Separation

Approximation

Calculation

Update

Combination

µx
p

, Cx,xp

linearnonlinear

observed

indirectly observed

µn
i

for

i = 1, . . . , L

f̃ (·)measurement ŷ

µo
e
, Co,oe

µx
e

, Cx,xe

Figure 2: Information flow of the filter step.

where A is given by

A =
[

I3,3 T · I3,3
0 I3,3

]
,

and zk consists of the translation T k and the velocity V k.
T is the sampling time. The process noise w

z
k is assumed to

be white, zero-mean, and Gaussian with covariance matrix

Qw
z
k

=

[
T 3

3 · q T 2

2 · q
T 2

2 · q T · q

]
,

when q is given by

q = diag
([
q2wV,x

q2wV,y
q2wV,z

]T)
.

6.1.2 Rotation
The rotation is described by a rotation vector [2]. In a track-
ing scenario, the rotation vector is typically time-variant.
This dynamic behavior can be described by a nonlinear dif-
ferential equation [3]

ṙ(t) =

{
a(r(t)) · ω(t) for ‖r(t)‖ ∈ ]0, π]
ω(t) for ‖r(t)‖ = 0

, (9)



which depends on the angular velocity ω(t). The matrix a(·)
is given by

a(r(t)) =I3,3 + 1
2 · C(r(t))+

+
1− 1

2 ·‖r(t)‖·cot
(
‖r(t)‖

2

)
‖r(t)‖2 C(r(t)) · C(r(t)) ,

where cot(·) is the cotangent and the matrix C(r(t)) is a
skew-symmetric matrix

C(r(t)) =

 0 −rz(t) ry(t)
rz(t) 0 −rx(t)
−ry(t) rx(t) 0

 .

The nonlinear differential equation (9) is discretized by the
Euler formula

ṙ(t) ≈ rk+1−rk

T

and the resulting discrete-time difference equation is

rk+1 = rk + T · a(rk) · ωk .

In (9), the range of the norm of the rotation vector lies in
the interval zero to π. To achieve this constraint in the
estimation procedure, a forward inference is performed by

rk,new = rk ·
(

1− 2π

‖rk‖

)
,

if the norm of the rotation vector is higher than π. The
forward inference can be calculated by a prediction step,
where no process noise is assumed. The angular velocity
is modeled as a random walk according to

ωk+1 = ωk + w
ω
k ,

where the process noise w
ω
k is white, zero-mean, and Gaus-

sian with covariance matrix

Qwω = diag
([
q2wω,x

q2wω,y
q2wω,z

]T)
.

6.1.3 System Equation
In this example, the nonlinear part depends on the rotation
vector. In the linear part of the state xlk, the translation, the
velocity, and the angular velocity is considered. The system
equation is written in the formrk+1

ωk+1

zk+1

 =

rk
0
0


︸ ︷︷ ︸
g(rk)

+

Ta(rk) 0
I3,3 0
0 A


︸ ︷︷ ︸

H(rk)

[
ωk

zk

]
︸ ︷︷ ︸

xl
k

+wk ,

where the covariance matrix of the noise wk is given by

Q =

0 0 0
0 Qwω 0
0 0 Qw

z
n

 .

6.2 Filtering

6.2.1 Inertial Sensors
The inertial sensors measure the angular velocity with re-
spect to the object coordinate system. The measurement
equation is modeled by a linear equation

yω
k

= kG · A · ωk + b+ v
ω
k ,

where kG is a sensor specific factor, A a misalignment ma-
trix, b the sensor offset, and v

ω
k the measurement noise. If

a measurement is available, the filtering can be performed
by using the Kalman Filter equation, because the measure-
ment equation is linear and the state is approximated with a
Gaussian distribution.

6.2.2 Acoustic Sensor
The second sensor measures the wave field. The measure-
ment equation depends on the translation and rotation. The
directly observed state is estimated by using the Gaussian
Filter. Based on the estimated mean and covariance ma-
trix, the indirectly observed state is updated. The nonlinear
measurement equation is given by

yjk =
N∑
i=1

1

4π·‖D(rk)·p̃j+T k−xi‖ ·

k∑
m=0

sim · sinc
(

(k −m) · π − ‖D(rk)·p̃j+T k−x
i‖

c·T

)
+ vjk,

where D (rk) is the rotation matrix

D (rk) = I3,3+
sin(‖rk‖)
‖rk‖ C(rk)+

1−cos(‖rk‖)
‖rk‖2

C(rk)C(rk).

The measurement equation describes the wave propagation
of the N sources to the jth microphone. The signal of each
source is characterized by the symbols sim, where m is the
discrete time of the source and k of the sensor. The sinc-
interpolation [11] is used to get a continuous time signal in
order to achieve subsample resolution. T is the sampling
interval, c the velocity of sound, and vjk the measurement
noise of the sensor j.

7 Results
The proposed approach is evaluated in a simulation and in
an experiment.

7.1 Simulation
In the simulation setup, a moving target object is consid-
ered. The trajectory of the object is simulated by piecewise
constant translational and angular velocities. Four micro-
phones are attached to the target, which are receiving MC-
CDMA (multi carrier-code division multiple access) signals
from four loudspeakers in order to achieve a distinguishable
mapping. For the simulation, the signals are delayed de-
pending on the time-variant distance between microphone



and loudspeaker. Furthermore, an inertial measurement unit
consisting of three gyroscopes measures the angular velocity
with respect to the target coordinate system. The measure-
ment frequency of the microphones and the gyroscopes are
48000 Hz and 480 Hz, respectively. The signals received
by the microphones are corrupted with noise. This noise is
generated by mirror image sources in order to model rever-
berations. The signals emitted by the four loudspeakers are
reflected at walls of the room, which is modeled by 24 mir-
ror image sources. The attenuation factor of the walls is set
to be 0.5, which results in an SNR of 4.247 dB. The angular
velocity is corrupted by additive zero-mean Gaussian noise
with covariance matrix Rvω = I3,3 · 10−4.

In the simulation, a constant position model is used due
to the fact that the simulated velocity has points of disconti-
nuity. The initial state and covariance matrix is set to

µr =
[
0 −0.0245 0

]T
, Cr,r0 = I3,3 · (10−3 · π/180)2

µT =
[
−0.9535 −0.9969 2

]T
, CT,T0 = I3,3 · 10−6

µω =
[
0 −0.6911 0

]T
, Cω,ω0 = I3,3 · 10−3

and the process and measurement noise to

Qwω = I3,3 · 5.1404 · 10−5

Qw
z
n

= diag
[
5.0 · 10−7 5.0 · 10−7 5.0 · 10−8

]
Rv = I4,4 · 10−3, Rvω = I3,3 · 10−4 .

For the approximation, five sample points for each dimen-
sion are used. In the first simulation run, no decomposition
is performed. Furthermore, the measurement and process
noise is augmented in the state vector. In this case, a total of
89 sample points are used for approximation.

The second simulation run takes advantages of the struc-
ture of the system and measurement equation in order to re-
duce the computational effort. For the prediction step, the
state vector is separated into the linear and nonlinear part,
where only 13 sample points are used. For the filtering step,
the Kalman Filter equations are used when measurements
from the inertial measurement unit are available. In the
other case when the microphones measures the wave field,
the state vector is separated into the directly observed and
indirectly observed part, which results in an approximation
with 25 sample points.

The computation time decreases by a factor of four com-
pared to the first simulation run. However, the accuracy de-
creased for the rotation vector, when the change of the angu-
lar velocity is high. In contrast, the mean of the root square
error (RMSE) for the decomposed algorithm (GF) is lower
than form the standard algorithm (GF, UKF). The average
of the RMSE for the rotation and the translation is shown in
Table 2. The RMSE for the rotation and the translation is
shown in Fig. 3, respectively.

7.2 Experiment
An object is moved ten times from a starting point to an end
point on a straight line. The experimental setup is similar to
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(a) RMSE for the rotation vector.
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(b) RMSE for the translation vector.

Figure 3: RMSE for the rotation and translation vector,
where the black points represent the decomposed algorithm
and the red points result from the full state case.

Trans. in 10−4 m Rot. in 10−4 rad
Dec. GF 19± 9.8515 11± 17

Full state GF 19± 9.9196 12± 16
Dec. UKF 19± 10.3126 20± 35

Full state UKF 18± 10.0988 19± 14

Table 2: The average and the standard deviation of the
RMSE for the rotation and the translation. The Gaussian
Filter is compared to the UKF.

the simulation, where in the experiment a constant velocity
model is assumed. Furthermore, five loudspeakers are peri-
odically emitting the signals and the sampling frequency of
the gyroscopes are 200 Hz. The initial state and covariance
matrix is set to

µr =
[
0 0 π/2

]T
, Cr,r0 = I3,3(1 · π/180)2

µT =
[
−0.05 −0.75 1.16

]T
, CT,T0 = I3,3 · 10−4

µω = µV =
[
0 0 0

]T
, Cω,ω0 = CV,V0 = I3,3 · 9 · 10−6,

respectively. The covariance matrix of process and measure-
ment noise was

Qwω = I3,3 · 6.3462 · 10−6

Qwx
n

= Qwy
n

=
[
3.014 · 10−14 2.170 · 10−10

2.170 · 10−10 2.083 · 10−6

]
Qwz

n
= Qwy

n
· 10−4, RM = I4,4 · 0.09, Rω = I3,3 · 0.01.

In Fig. 4, the results for the five test run are shown. The
measured end point and the distance between start and end
point is given in Table 3. In addition, the average over the
ten test runs and the standard deviation is listed.

8 Conclusions
In this paper, two principles for reducing the computational
effort for state estimation in nonlinear systems are discussed
and exploited for the Gaussian Filter. These decompositions
exploit the structure of the nonlinear system equations and
facilitate to reduce the number of sample points for approx-
imating the state density. In doing so, the computation time
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Figure 4: Results from five test runs. The solid lines are the
estimates from the full state case. The dashed lines are the
results from the decomposed case.

Measured x in m y in m z in m
End point -0.05 1.33 1.16
Distance 2.08
Full state x in m y in m z in m

End point mean 0.0161 1.3102 1.0482
End point std. 0.0189 0.0218 0.0397
Distance mean 2.0659
Distance std. 0.0189

Decomp. x in m y in m z in m
End point mean 0.01640 1.3057 1.0362
End point std. 0.01655 0.0264 0.0552
Distance mean 2.0620
Distance std. 0.0252

Table 3: The average results from ten test runs.

can be significantly decreased without significantly affect-
ing the estimation quality. The advantages are shown in
simulations and experiments.

In contrast to a comparable linear/nonlinear decomposi-
tion approach presented in [9] for the unscaled version of
the UKF, the proposed approaches are more generally appli-
cable. For instance, scaling the sample points can be consid-
ered, which is essential for very high-dimensional problems.
Furthermore, the decomposition into directly/indirectly ob-
served states is also taken into account.
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