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Abstract – In multilateration tracking, an object,
e.g., an airplane, emits a known reference signal, which
is received by several base stations (sensors) located at
known positions. The receiving times of the signal at
the sensors correspond to the times of arrival (TOA)
plus an unknown offset, because the emission time is
unknown. Usually, for estimating the position of the ob-
ject, the receiving times are converted to a larger num-
ber of time differences of arrival (TDOA) in order to
eliminate the unknown offset. To avoid this conver-
sion, the proposed approach directly uses the receiving
times. This is achieved by 1. determining the optimal
offset from the redundant measurements in closed form
and 2. by considering a modified measurement equation.
As a result, position estimation can be performed by
optimal stochastic linearization.

Keywords: Multilateration Tracking, Localization,
Optimal Stochastic Linearization, Gaussian Assumed
Density Filter.

1 Introduction
In civil air surveillance, secondary radar is used for

tracking the trajectory of an aircraft. If the airplane
receives a request from a ground station, it send a re-
sponse, which is then received by several sensors located
at known positions. Due to the fact that the receiving
signal is known, each sensor can determine the receiv-
ing time of the response. The receiving times depend
on the times of arrival (TOA), which in turn depend
on the distances between the airplane and the sensors,
and a time offset. This time offset corresponds to the
time, when the aircraft emits the response.

Based on these measured receiving times and the
known position of the sensors, the trajectory of the air-
craft can be estimated. Usually, the receiving times
are converted to time differences of arrival (TDOA) in
order to eliminate the unknown emission time. TDOA-
based localization approaches are also widely studied in
the area of passive speaker localization. There, several

closed-form solutions [2, 3, 11, 12] or approaches using
a state estimator [10] have been developed.

The proposed approach avoids this conversion, where
the unknown emission time is eliminated. Therefore,
the new approach directly uses the receiving times for
estimation. However, for estimation purposes, the re-
ceiving times are converted to pseudo-ranges by multi-
plying with the wave propagation speed. These pseudo-
ranges are composed of the ranges (distances between
object and sensors) and a range offset, which has an
equal influence on all ranges. Hence, in the measure-
ment equation the unknown position of the object and
an unknown range offset occurs. In order to estimate
the position a state estimator is used. Due to non-
linearities in the measurement equation, approximate
state estimators have to be used. Popular estimators
belong to the class of Gaussian Assumed Density Fil-
ters [5, 6, 7, 8], like the Unscented Kalman Filter [7].
This kind of filter assumes that all random variables
can be approximated by Gaussian distributions. If the
Gaussian assumption is applied, state estimation can be
performed efficiently based on the first two moments
(mean and covariance). For calculating the required
moments, usually sample-based methods are used. On
the other hand, for some classes of nonlinear equations
like polynomial or trigonometric functions the required
moments can be calculated in closed form.

In order to estimate the position of the object and
the unknown range offset by using a state estimator two
different procedures are suitable based on the assump-
tions for the range offset. If the assumption holds that
the offset has a specific dynamic behavior, the range
offset can be augmented in the state vector. In some
scenarios, this assumption is not feasible, e.g., when the
offset is arbitrary or the dynamic behavior cannot be
described by an adequate system model.

The proposed approach assumes that the offset can
be arbitrary. For estimation propose the nonlinear mea-
surement equation is first modified in such a way that
it is given in polynomial form. Based on this modified
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Figure 1: One object emits one known reference signal,
which is received by a sensor. The measured receiv-
ing time consist of the time of flight and a time offset,
because the time when the object emits the signal is
unknown.

measurement equation, the range offset and the posi-
tion are estimated in closed form by using analytic mo-
ment calculation. The proposed approach consists of
two steps. In the first step, the Mahalanobis distance
of the measurement process is minimized in order to
calculate the offset. Therefore, no prior knowledge for
the offset has to be assumed. In the second step, the
position of the object is updated by using the principle
of a Gaussian Assumed Density Filter.

The structure of the paper is as follows. In Sec. 2,
a problem formulation for multilateration tracking is
given. The algorithm is explained in Sec. 3, where the
information flow of the proposed approach is described.
First, the measurement equation is modified in Sec. 3.1.
For estimating the offset and for updating the state,
the moments of the measurement process have to be
calculated, which is presented in Sec. 3.2. Based on
the calculated moments in Sec. 3.3, the algorithm for
determining the offset is presented. This estimate for
the offset can be used for Bayesian inference, which is
explained in Sec. 3.4. The approach is evaluated in
simulations in Sec. 4. In Sec. 5, a conclusion is given.

2 Problem Formulation
In multilateration tracking, an object, e.g., an air-

craft, emits a reference signal, which is detected by
several receivers located at known positions. We as-
sume that all receivers are synchronized in such a way
that they have the same time base. Furthermore, the
time when the object emits the signal is unknown (see

sensor
object
exact range
measured pseudo-range
pseudo-range minus arbitrary offset

Figure 2: Geometrical interpretation of the problem.
The red lines show the measured pseudo-ranges cor-
responding to measured receiving times. The yellow
curves are the ranges subtracted from an arbitrary off-
set. The green lines show the result if the offset is ex-
actly known. The black dot is the emitter. The black
crosses are the receivers.

Fig. 1). This unknown starting time leads to an un-
known range offset for all measured pseudo-ranges. In
Fig. 2, a geometric interpretation is shown.

The goal of multilateration is to estimate the po-
sition of the object based on noisy measured pseudo-
ranges taken at different time steps, in order to track
the trajectory of the object.

From a mathematical point of view, a measured
pseudo-range ŷi,k is described by a nonlinear measure-
ment equation, which is given by

yi,k = ||Si − xk − vi,k||2 + bk , (1)

where Si is the known position from receiver i, xk is the
position of the object at time step k, bk the unknown
range offset, and vi,k the noise process, which influences
the position [4]. ŷi,k is a realization of the random
variable yi,k.

Furthermore, the dynamic behavior of the object is
described by a system model. This system model com-
prises assumptions about the possible flight maneuver
of the airplane, e.g., position-velocity model [13] or co-
ordinated turn model [1]. In the considered example, we
focus on a very simple system model, which is described
by

xk+1 = xk + wk , (2)

where k is the time index and wk is zero-mean Gaussian
noise characterized by the covariance matrix Cw. It
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Figure 3: Information flow of the proposed approach.

should be pointed out that the proposed approach is
not restricted to the system model in (2).

For the rest of the paper, the time index k is omitted.

3 Multilateration Tracking
The proposed approach is a two-step procedure. In

a first step, the offset is calculated, which is then used
in the second step for updating the position. To cal-
culate the offset b and to update the variable x, prior
knowledge for the random variable x in form of a prob-
ability density function fp (x) and realizations ŷ of the
measurement process y are used.

To obtain analytic expressions for the algorithm, the
measurement equation in (1) is modified and so the
mean and covariance of a transformed measurement
vector called z can be calculated based on the random
variable x and a nonlinear function h (·) in closed form.

Based on the calculated quantities µz, Cz and the

actual measurement ŷ, an estimate b̃ for the unknown
offset b is determined by minimizing the Mahalanobis
distance.

In the second step, the variable x is updated by us-
ing Bayesian inference. By applying the Gaussian as-
sumption, which means that the density of the state
fp (x) and the density of the measurement process f (z)
are jointly Gaussian distributed, the parameters of the
estimated density fe (x) = N

(
x− µe,Ce

)
is updated.

Furthermore, for recursive estimation a prediction
step is used in order to propagate the estimated state
to the next time step.

In Fig. 3, the information flow for the proposed ap-
proach is shown.

3.1 Modified Measurement Equation

The measurement equation (1) for the multilatera-
tion problem is now rewritten. First, the offset b is
pulled to the left-hand-side of the equation. Then, both
sides of the equation are squared in order to eliminate
the square root. The new measurement equation is then
given in polynomial form by

(yi − b)
2

= (Si − x− vi)
T · (Si − x− vi)

=

M∑
m=1

(Sm,i − xm − vm,i)
2
,

where M is the dimension of the considered coordinate
system, i.e. in a three-dimensional coordinate system
M = 3. The sum can be written as

M∑
m=1

(Sm,i − xm − vm,i)
2

= (3)

1T
M · ((Si − x− vi) ◦ (Si − x− vi)) ,

where ◦ is the elementwise product and 1M is a one
vector with length M . Furthermore, a new random
variable zi := (yi − b)

2
is introduced. For this new

random variable, the measurement equation is given by

zi = 1T
M · ((Si − x− vi) ◦ (Si − x− vi)) .

The resulting measurement equation for N receivers is
described by

z =

 1T
M · ((S1 − x− v1) ◦ (S1 − x− v1))

...
1T
M · ((SN − x− vN ) ◦ (SN − x− vN ))


= h(x,v).

(4)

Based on the modified measurement equation (4), the
required moments (mean and covariance) of the random
variable z can be specified analytically.

3.2 Moment Calculation

For the offset calculation and the filter step, the
moments µz and Cz are required. The required mo-
ments are calculated by analytic moment calculation
[9]. In order to calculate the required moments in
closed form, the densities for the random variables x
and v are assumed to be Gaussian distributed, given
by N

(
x− µp,Cp

)
and N (v,Cv), where µp and Cp de-

scribe the predicted mean and covariance, respectively.
The random variable v is zero-mean, with a covariance
given by

Cv =



Cv
1 . . . Cv

1,j . . . Cv
1,N

...
...

...
...

...
Cv

i,1 . . . Cv
i,j . . . Cv

i,N
...

...
...

...
...

Cv
N,1 . . . Cv

N,j . . . Cv
N

 ,



where Cv
i,j describes the covariance between the senor

i and sensor j. In order to have a comprehensive
derivation of the moment calculation, a new random
variable

f =

 (S1 − x− v1)
...

(SN − x− vN )

 (5)

is used, which consists of N ·M entries. The variable
N is the number of sensors and M corresponds to the
dimension of the considered coordinate system. The
measurement equation (4) is then given by

z =


1T
M 0T

N ·M−M

0T
M 1T

M 0T
N ·M−2M

...
...

...
0T
N ·M−M 1T

M


︸ ︷︷ ︸

KT

·
(
f ◦ f

)
,(6)

where first each entry of the vector f is squared. Then,
parts of the resulting vector are accumulate accord-
ing to (3) by multiplying with the matrix KT. Fur-
thermore, the matrix K is given in short form K =
IN,N ⊗ 1M , I is the identity matrix, ⊗ is the Kronecker
product, 1M is a one vector with length M , 0M is a
zero vector with length M , and ◦ the elementwise prod-
uct. Due to the fact that (5) describes a linear relation-
ship, the density of the random variable f is Gaussian

distributed N
(
f − µf ,Cf

)
, with mean and covariance

µf =

S1 − µp

...
SN − µp

 , Cf = Cv + 1N,N ⊗Cp .

In the matrix 1N,N = 1N · (1N )T, all entries are equal
to one.

3.2.1 Mean µz

The mean µz of the random variable z is defined by

µz = Ez {z} =

∫
z · f (z) dz ,

which it can be expanded to

µz =

∫∫∫
z · f (z, x, v) dz dxdv .

The joint density f (z, x, v) of the random variables can
be replaced by using Baye’s rule

f (z, x, v) = f (z|x, v) · f (x, v)

= δ (z − h (x, v)) · f (x, v) .

Furthermore, the random variables x and v are as-
sumed as independent, so that the joint density f (x, v)
can be replaced by

f (x, v) = fp (x) · f (v) .

By using the sifting property of the Dirac delta distri-
bution the mean µz is calculated according to

µz =

∫∫
h (x, v) fp (x) · f (v) dx dv

= Ex,v {h (x,v)} .
(7)

For calculating the mean µz, (4) is used in (7). By
using the new random variable f and (6), the mean µz

is given by

µz = Ef

{
KT ·

(
f ◦ f

)}
= KT · Ef

{
f ◦ f

}
,

where the linear property of the expectation operator
is used. Due to the elementwise operator ◦ in the ex-
pectation operator, the result is the second-order non-
central moment of each entry from the random variable
f according to

Ef i

{
(f i)

2
}

=
(
µf
i

)2

+ Cf
i,i ,

where µf
i is the ith entry of the vector µf and Cf

i,i is the

i, ith entry of the matrix Cf for i = 1, . . . , N ·M . If this

is generalize to all entries the square
(
µf
i

)2

becomes

the elementwise product of µf ◦ µf and Cf
i,i becomes a

vector consisting of the diagonal entries of the matrix
Cf , which results for the mean µz then in

µz = KT ·
(
µf ◦ µf + diag

(
Cf
))

.

3.2.2 Covariance Cz

In analogy, the covariance Cz is calculated as

Cz =

∫∫ (
h (x, v)− µz

)
·(

h (x, v)− µz
)T · fp (x) · f (v) dxdv

= Ex,v

{
h (x,v) · h (x,v)

T
}
− µz ·

(
µz
)T

.

(8)

For determining the covariance (4) is used in (8). By
using the random variable f and (6), the covariance Cz

is given by

Cz = Ef

{
KT ·

(
f ◦ f

)
·
(
KT ·

(
f ◦ f

))T}− µz
(
µz
)T

= KT · Ef

{(
f ◦ f

)
·
(
fT ◦ fT

)}
·K− µz

(
µz
)T
.

In order to determine the covariance Cz the expected

value Ef

{(
f ◦ f

)
·
(
fT ◦ fT

)}
has to been calculated.

The Cartesian product of the squared variables can
be rewritten as the squared Cartesian product of the
variables, which is given by

Cz = KT · Ef

{(
f · fT

)
◦
(
f · fT

)}
·K− µz

(
µz
)T
.

(9)



For determining the expected value

Ef

{(
f · fT

)
◦
(
f · fT

)}
of the matrix, each en-

try can be calculated separately due to the linearity
of the expectation operator. The i, jth entry of the
matrix is the fourth-order non-central moment, which
is given by

Ef i,fj

{
(f i)

2 ·
(
f j

)2}
=((

µf
i

)2

+ Cf
i,i

)
·
((

µf
j

)2

+ Cf
j,j

)
+ 4 · µf

i · µ
f
j · C

f
i,j + 2 ·

(
Cf

i,j

)2

,

where µf
i is the ith entry of the vector µf and Cf

i,j is

the i, jth entry of the matrix Cf for i = 1, . . . , N ·M
and j = 1, . . . , N ·M . If this is generalized to all entries
to the matrix, the resulting matrix can be written as

Ef

{(
f · fT

)
◦
(
f · fT

)}
= (10)(

µf ◦ µf + diag
(
Cf
))
·
(
µf ◦ µf + diag

(
Cf
))T

+ 4 ·
(
µf ·

(
µf
)T) ◦Cf + 2 ·Cf ◦Cf .

Using the result of (10) in (9), the covariance Cz is
given by

Cz = KT ·
(

4 ·
(
µf ·

(
µf
)T) ◦Cf + 2 ·Cf ◦Cf

)
·K ,

where the Cartesian product µz ·
(
µz
)T

is given by

µz ·
(
µz
)T

=KT ·
(
µf ◦ µf + diag

(
Cf
))
·(

µf ◦ µf + diag
(
Cf
))T ·K .

3.3 Offset Calculation

For determining an estimate b̃ for the unknown off-
set b, the Mahalanobis distance is minimized. As the
square root is a monotonic function, this is equivalent
to minimizing the squared Mahalanobis distance given
by

M (b) =
(
µz −

(
ŷ − 1 · b

)
◦
(
ŷ − 1 · b

))T · (Cz)
−1 ·(

µz −
(
ŷ − 1 · b

)
◦
(
ŷ − 1 · b

))
,

which leads to a simpler optimization problem. For
finding the minimum the derivative with respect to the
parameter b must be zero according to

dM

db
= 4

(
ŷ − 1b

)T
(Cz)

−1 (
µz −

(
ŷ − 1b

)
◦
(
ŷ − 1b

))
= 0 .

This equation can be rewritten as a polynomial function
according to

b3 · a1 + b2 · a2 + b · a3 + a4 = 0 , (11)
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Figure 4: Mahalanobis distance evaluated for different
offset values. The red line shows the true offset.

where the factors a1, . . . , a4 are

a1 =1T · (Cz)
−1 · 1 ,

a2 =− 3 · 1T · (Cz)
−1 · ŷ ,

a3 =− 1T · (Cz)
−1 · µz + 1T · (Cz)

−1 ·
(
ŷ ◦ ŷ

)
+ 2 ·

(
ŷ
)T · (Cz)

−1 ·
(
ŷ
)
,

a4 =
(
ŷ
)T · (Cz)

−1 · µz −
(
ŷ
)T · (Cz)

−1 ·
(
ŷ ◦ ŷ

)
.

First, the three roots b1, b2, and b3 of the polynomial
function (11) are determined, where b1 < b2 < b3. If
these roots are used for evaluating the distance M (b)
(see Fig. 4), the smallest b1 and largest b3 value for the
roots provides each a local minimum and the remaining
value b2 for the third root a local maximum. Further-
more, the smallest root b1 corresponds to the estimated
offset b1 = b̃, because the largest root b3 provides neg-
ative ranges, i.e. in this case (ŷ − 1b3) < 0 and so the
ranges are h(x,v) < 0, so the root b3 can be omitted.

3.4 Filter Step

In the filter step, the predicted density fp (x) is
updated based on the measurement ŷ. As the re-
sult of the filter step, the estimated density fe (x) =
N
(
x− µe,Ce

)
is provided. Thanks to the additional

Gaussian assumption, the estimated mean µe and co-
variance Ce are updated according to

µe = µp + Cx,z · (Cz)
-1 ·
((
ŷ − 1b̃

)
◦
(
ŷ − 1b̃

)
− µz

)
,

Ce = Cp −Cx,z · (Cz)
-1 · (Cx,z)

T
,

where the estimated offset b̃ has to be subtracted from
the measurement ŷ and this result has to be squared.



3.4.1 Cross-Covariance Cx,z

Furthermore, the cross-covariance Cx,z is calculated
as

Cx,z =∫∫ (
x− µp

)
·
(
h (x, v)− µz

)T · fp (x) · f (v) dxdv

= Ex,v

{
x · h (x,v)

T
}
− µp ·

(
µz
)T

.

By using (4), the expected value Ex,v {·} is

Ex,v

{
x · h (x,v)

T
}

=

− 2Cp ·
[
S1 − µp . . . SN − µp

]
+ µp ·

(
µz
)T

and the resulting cross-covariance Cx,z is then given by

Cx,z = −2Cp ·
[
S1 − µp . . . SN − µp

]
.

3.5 Prediction Step

For recursive estimation, the system model in (2) is
used. The prediction is performed by using the Kalman
Filter prediction equation for the predicted mean and
covariance

µp = µe , Cp = Ce + Cw .

If a different motion model is used, e.g., a position-
velocity model [13], only the cross-covariance has to
be considered as the mean µz and covariance Cz only
depends on the position and not on the velocity, i.e.,
additionally the cross-covariance for the filter step de-
pending on the velocity has to be calculated.

4 Simulation Results

In the simulation, the problem of multilateration
tracking is addressed. The proposed approach is com-
pared to two classic approaches. In the first approach,
ranges are measured, which corresponds to a TOA-
based approach. In this case, the measurement equa-
tion is given by

yi = ||Si − x− vi||2 ,

where i = 1, . . . , N and the offset is precisely known.
The TOA-based approach is the so called trilateration,
where spheres have to be intersected.

In the second approach, range differences (TDOA-
based) are used for estimation. By using (1), the mea-
surement equation for the second case is given by

y1 − yi︸ ︷︷ ︸
∆yi−1

= ||S1 − x− v1||2 − ||Si − x− vi||2 ,

where i = 2, . . . , N . In the TDOA-based approach sen-
sor 1 is selected as the reference sensor. By subtract-
ing the measurements at the sensors i = 2, . . . , N from
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(a) Mean and standard deviation of the RMSE for the
three approaches. The black line is the result, when the
offset is exactly known. The green line show the result of
the proposed approach. The result of the TDOA-based
approach is shown in the red line.
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(b) Mean and standard deviation of the RMSE for the
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Figure 5: Results of the three estimators by using four
sensors.



the measurement at sensor 1 the measured range dif-
ferences ∆yi−1 are provided. Hence, The TDOA-based
approach relies on intersection of hyperboloids.

At different noise level ranging from 0.001 meter
to 0.3 meter, 1000 random trajectories are generated.
Each trajectory consists of 100 measurement points.
The position of the emitter is estimated based on the
measurements at the four sensors, which are located at
the positions

S1 =

[
−1
−1

]
m, S2 =

[
−1
+1

]
m,

S3 =

[
+1
−1

]
m, S4 =

[
+1
+1

]
m .

Furthermore, the simulated range offset is a realization
of a uniform distribution ranging from 0 meter to 100
meter. For every measurement at one time step, a new
offset is generated.

The three estimators are initialized with zero mean
and an initial covariance diag

([
10m2 10m2

])
. The

chosen system model for the three estimators is given
by (2), where the covariance for the process noise is
Cw = diag

([
0.01m2 0.01m2

])
. The estimator in the

TOA-based scenario relies on optimal stochastic lin-
earization, where the required moments for the filter
step are calculated by analytic moment calculation as
is shown in Sec. 3.2 and Sec. 3.4. In the TDOA-based
scenario, the UKF is used for estimation.

The average of the root-mean-square-error (RMSE)
and its standard deviation from the three approaches
is shown in Fig. 5 (a), where the black line is the lower
bound for the considered problem. Thus, the offset is
exactly known in this case. Compared to the green line,
when the offset is estimated, the average of the RMSE
of the proposed approach is slightly higher. The red line
shows the results for the TDOA-based approach. For
small measurement noise, this approach provides satis-
factory results, but if the measurement noise increases,
the accuracy of the TDOA-based approach decreases
significantly compare to the new and the TOA-based
approach.

Furthermore, the RMSE of the estimated offset in-
creases approximately linear with the noise level as is
shown in Fig. 5 (b). The average RMSE over the test
runs for three different noise levels is shown in Fig. 5 (c).
The transition time for the offset is three time steps.
After that, the average of the RMSE for the offset is
constant.

In the next simulation the number of sensors is de-
creased (three sensors). The accuracy is decreasing and
the deviation between the three approaches is increas-
ing (see Fig. 6 (a)). Furthermore, the average of the
RMSE for the offset increases (see Fig. 6 (b)). As in
the scenario before, the transition time for calculating
the offset is three time steps (see Fig. 6 (c)).
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(a) Mean and standard deviation of the RMSE for the
three approaches. The black line is the result, when the
offset is exactly known. The green line show the result of
the proposed approach. The result of the TDOA-based
approach is shown in the red line.
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Figure 6: Results when the minimal number of sensors
is used.



In the first simulation results, the average of the
RMSE of the new approach has a maximum deviation
of 0.0024 meter compared to the TOA-based approach.
The maximum deviation by using the TDOA-based ap-
proach is 0.0263 meter. In the case of the minimum
number of sensors, the maximum deviation increases for
the new approach to 0.0195 meter and for the TDOA-
based approach to 0.0455 meter. This shows that the
proposed approach determines the offset and updates
the state accurately compared to the TDOA-based ap-
proach and the TOA-based approach, where the TOA-
based approach can be seen as the lower bound for this
kind of problem.

5 Conclusions
In this paper, a two-step procedure for multilatera-

tion tracking is presented, where the measured receiv-
ing times are directly used for estimating the position.
The proposed approach relies on optimal stochastic lin-
earization for calculating the range offset and updating
the position. Based on analytic expressions for the mo-
ments, the offset is calculated by minimizing the Maha-
lanobis distance. In a second step, this result is used for
updating the state by using Bayesian inference. Hence,
no sample-based methods have to been applied, because
the required moments are calculated in closed form.
Furthermore, the computational demand is lower com-
pared to sample-based methods, because for example
no matrix roots have to be calculated.

A disadvantage of this procedure is that no uncer-
tainty quantity can be given for the estimated offset
compare to approaches, where the offset is augmented
in the state vector. However, in some scenarios state
augmentation is not feasible, when the offset cannot be
described by an adequate system model. Hence, the
advantage of the proposed approach is that no assump-
tions about the dynamic behavior for the offset has to
be made.

In the multilateration tracking scenario, the new
approach provides better estimation results than the
TDOA-based approach, even for higher noise levels.
Compared to the TDOA-based approach, where hyper-
boloids are intersected, the new approach relies on the
intersection of spheres depending on the estimate of the
offset. Hence, the new approach can be interpreted as
the intersection of spherical hypercones.
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