251 research outputs found

    Neutrinos, Fission Cycling, and the r-process

    Get PDF
    It has long been suggested that fission cycling may play an important role in the r-process. Fission cycling can only occur in a very neutron rich environment. In traditional calculations of the neutrino driven wind of the core-collapse supernova, the environment is not sufficiently neutron rich to produce the r-process elements. However, we show that with a reduction of the electron neutrino flux coming from the supernova, fission cycling does occur and furthermore it produces an abundance pattern which is consistent with observed r-process abundance pattern in halo stars. Such a reduction can be caused by active-sterile neutrino oscillations or other new physics.Comment: Typos corrected. Presented at NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Strandvisserij langs de Westkust

    Get PDF

    Het epos van de IJslandvaart in brieven

    Get PDF

    In de poortjes van Nieuwpoort omstreeks 1900

    Get PDF

    De laatste IJslandvaarders van Koksijde

    Get PDF

    Kleine haringvisserij op de Westkust De Panne 1900-1914

    Get PDF

    Fission Cycling in a Supernova r-process

    Full text link
    Recent halo star abundance observations exhibit an important feature of consequence to the r-process: the presence of a main r-process between the second and third peaks which is consistent among halo stars. We explore fission cycling and steady-beta flow as the driving mechanisms behind this feature. The presence of fission cycling during the r-process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady-beta flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady-beta flow in the r-process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady-beta flow is obtained.Comment: 9 pages, 8 figure

    Mosselkultuur te Nieuwpoort

    Get PDF
    • …
    corecore