It has long been suggested that fission cycling may play an important role in
the r-process. Fission cycling can only occur in a very neutron rich
environment. In traditional calculations of the neutrino driven wind of the
core-collapse supernova, the environment is not sufficiently neutron rich to
produce the r-process elements. However, we show that with a reduction of the
electron neutrino flux coming from the supernova, fission cycling does occur
and furthermore it produces an abundance pattern which is consistent with
observed r-process abundance pattern in halo stars. Such a reduction can be
caused by active-sterile neutrino oscillations or other new physics.Comment: Typos corrected. Presented at NIC-IX, International Symposium on
Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland,
25-30 June, 200