158 research outputs found
Advanced modelling made simple with the Gmodel metalanguage.
Gmodel is a metalanguage that has been designed from the ground up to enable specification and instantiation of modelling languages. Although a number of metalanguages can be used for this purpose, most provide no or only limited support for modular specifications of sets of complementary modelling languages. Gmodel addresses modularity and extensibility as primary concerns, and is based on a small number of language elements that have their origin in model theory and denotational semantics. This article illustrates Gmodel's capabilities in the area of model-driven integration by showing that the Eclipse Modeling Framework Ecore language can easily be emulated. Gmodel offers support for unlimited multi-level instantiation in the simplest possible way, and any metalanguage emulated in Gmodel can optionally be equipped with Gmodel's multi-level instantiation functionality
Knowledge industry survival strategy (KISS): fundamental principles and interoperability requirements for domain specific modeling languages.
Domain Specific Languages are raising the level of abstraction of software specifications and of knowledge represen-tation in general. When DSLs are used to formalize the results of domain analysis, the result is a clean separation of concerns in the problem space. This is a major advance over aspect oriented programming, where separation of concerns is only achieved in the solution space. However, the level of interoperability between current DSL tools is comparable to the level of interoperability between CASE tools in the 90s. To increase the popularity of DSL based approaches, this needs to change. Software development has become highly decentralized, and an assumption that all parties in a global software supply chain will use identical tooling is simply not realistic. As a result today's software supply chains are much less automated than supply chains in other, more mature industries. The KISS series of workshops is used to incrementally establish a consensus on the fundamental principles that underpin the use of DSLs, and to improve DSL tool interoperability
Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems
A two dimensional self-gravitating Hamiltonian model made by
fully-coupled classical particles exhibits a transition from a collapsing phase
(CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical
point of view, the two phases are characterized by two distinct single-particle
motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous
diffusion is observed up to a time that increases linearly with .
Therefore, the finite particle number acts like a white noise source for the
system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review
A conjectural extension of Hecke’s converse theorem
We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses
Equilibrium and dynamical properties of two dimensional self-gravitating systems
A system of N classical particles in a 2D periodic cell interacting via
long-range attractive potential is studied. For low energy density a
collapsed phase is identified, while in the high energy limit the particles are
homogeneously distributed. A phase transition from the collapsed to the
homogeneous state occurs at critical energy U_c. A theoretical analysis within
the canonical ensemble identifies such a transition as first order. But
microcanonical simulations reveal a negative specific heat regime near .
The dynamical behaviour of the system is affected by this transition : below
U_c anomalous diffusion is observed, while for U > U_c the motion of the
particles is almost ballistic. In the collapsed phase, finite -effects act
like a noise source of variance O(1/N), that restores normal diffusion on a
time scale diverging with N. As a consequence, the asymptotic diffusion
coefficient will also diverge algebraically with N and superdiffusion will be
observable at any time in the limit N \to \infty. A Lyapunov analysis reveals
that for U > U_c the maximal exponent \lambda decreases proportionally to
N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy,
in spite of a clear non ergodicity of the system, a common scaling law \lambda
\propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two
column version with included figures : less paper waste
Migration, communities-on-the-move and international innovation networks: An empirical analysis of Spanish regions
This paper investigates the impact of migration on innovation networks between regions and foreign countries. We posit that immigrants (emigrants) act as a transnational knowledge bridge between the host (home) regions and their origin (destination) countries, thus facilitating their co-inventorship networks. We also argue that the social capital of both the hosting and the moving communities reinforces such a bridging role, along with language commonality and migrants’ human capital. Focusing on Spain, as a country that hosted an intense process of migration over the past two decades, we combine patent data with national data on residents and electors abroad and we apply a gravity model to the co-inventorship between Spanish provinces (NUTS3 regions) and a number of foreign countries. Both immigrants and emigrants affect the kind of innovation networking at stake. The social capital of both the moving and the hosting communities actually moderate this impact in a positive way. The effect of migration is stronger for more skilled migrants and with respect to non-Spanish speaking countries, pointing to a language-bridging role of migrants. Policy implications are drawn accordingly
Recommended from our members
A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant
A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram
Amount of substance and the mole in the SI
Abstract
Following the revision of the International System of Units (SI), that takes effect on 20 May 2019, the unit mole is defined by using a fixed number of elementary entities. This number is the fixed numerical value of the Avogadro constant, which is the defining constant of the unit mole. This definition was made possible because the determination of the Avogadro constant had reached a level of relative uncertainty that allowed its value to be fixed and, at the same time, safeguard continuity of measurement results before and after the definition. The motivation for the revision of the SI and the mole in particular will be explained and the experimental work that allowed it is summarized
Improved measurement results for the Avogadro constant using a 28Si-enriched crystal
New results are reported from an ongoing international research effort to
accurately determine the Avogadro constant by counting the atoms in an
isotopically enriched silicon crystal. The surfaces of two 28Si-enriched
spheres were decontaminated and reworked in order to produce an outer surface
without metal contamination and improved sphericity. New measurements were then
made on these two reconditioned spheres using improved methods and apparatuses.
When combined with other recently refined parameter measurements, the Avogadro
constant derived from these new results has a value of mol. The X-ray crystal density method has thus achieved
the target relative standard uncertainty of necessary for
the realization of the definition of the new kilogram.Comment: postprint, 22 page, 3 figures, 14 table
- …