25 research outputs found

    Esa Caves: training astronauts for space exploration

    Get PDF
    The first spaceflight was several decades ago, and yet extraterrestrial exploration is only at the beginning and has mainly been carried out by robotic probes and rovers sent to extraterrestrial planets and deep space. In the future human extraterrestrial exploration will take place and to get ready for long periods of permanence in space, astronauts are trained during long duration missions on the International Space Station (ISS). To prepare for such endeavours, team training activities are performed in extreme environments on Earth, as isolated deserts, base camps on Antarctica, or stations built on the bottom of the sea, trying to simulate the conditions and operations of space. Space agencies are also particularly interested in the search of signs of life forms in past or present extreme natural environments, such as salt lakes in remote deserts, very deep ocean habitats, submarine volcanic areas, sulphuric acid caves, and lava tubes. One natural environment that very realistically mimics an extraterrestrial exploration habitat is the cave. Caves are dark, remote places, with constant temperature, many logistic problems and stressors (isolation, communication and supply difficulties, physical barriers), and their exploration requires discipline, teamwork, technical skills and a great deal of behavioural adaptation. For this reason, since 2008 the European Space Agency has carried out training activities in the subterranean environment and the CAVES project is one of those training courses, probably the most realistic one. CAVES stands for Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills, and is meant as a multidisciplinary multicultural team exploration mission in a cave. It has been developed by ESA in the past few years (2008-2011) and is open for training of astronauts of the ISS Partner Space Agencies (USA, Russia, Japan, Canada, and Europe). Astronauts are first trained for 5 days to explore, document and survey a karst system, then take on a cave exploration mission for 6 days underground. A team of expert cave instructors, a Human Behaviour and Performance facilitator, scientists and video reporters, ensure that all tasks are performed in complete safety and guides all these astronauts\u27 activities. During the underground mission the astronauts\u27 technical competences are challenged (exploring, surveying, taking pictures), their human behaviour and decision-making skills are debriefed, and they are required to carry out an operational programme which entails performing scientific tasks and testing equipment, similarly to what they are required to do on the ISS. The science program includes environmental and air circulation monitoring, mineralogy, microbiology, chemical composition of waters, and search for life forms adapted to the cavern environment. The CAVES 2012 Course will be explained and the first interesting scientific results will be presented

    Expedition Cognition: A Review and Prospective of Subterranean Neuroscience With Spaceflight Applications

    Get PDF
    Renewed interest in human space exploration has highlighted the gaps in knowledge needed for successful long-duration missions outside low-Earth orbit. Although the technical challenges of such missions are being systematically overcome, many of the unknowns in predicting mission success depend on human behavior and performance, knowledge of which must be either obtained through space research or extrapolated from human experience on Earth. Particularly in human neuroscience, laboratory-based research efforts are not closely connected to real environments such as human space exploration. As caves share several of the physical and psychological challenges of spaceflight, underground expeditions have recently been developed as a spaceflight analog for astronaut training purposes, suggesting that they might also be suitable for studying aspects of behavior and cognition that cannot be fully examined under laboratory conditions. Our objective is to foster a bi-directional exchange between cognitive neuroscientists and expedition experts by (1) describing the cave environment as a worthy space analog for human research, (2) reviewing work conducted on human neuroscience and cognition within caves, (3) exploring the range of topics for which the unique environment may prove valuable as well as obstacles and limitations, (4) outlining technologies and methods appropriate for cave use, and (5) suggesting how researchers might establish contact with potential expedition collaborators. We believe that cave expeditions, as well as other sorts of expeditions, offer unique possibilities for cognitive neuroscience that will complement laboratory work and help to improve human performance and safety in operational environments, both on Earth and in space

    Human Physiology During Exposure to the Cave Environment: A Systematic Review With Implications for Aerospace Medicine

    Get PDF
    Background: Successful long-duration missions outside low-Earth orbit will depend on technical and physiological challenges under abnormal environmental conditions. Caves, characterized by absence of light, confinement, three-dimensional human movement and long-duration isolation, are identifiably one of the earliest examples of scientific enquiry into space analogs. However, little is known about the holistic human physiological response during cave exploration or prolonged habitation.Objectives: The aim of our review was to conduct a systematic bibliographic research review of the effects of short and prolonged exposure to a cave environment on human physiology, with a view to extend the results to implications for human planetary exploration missions.Methods: A systematic search was conducted following the structured PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for electronic databases.Results: The search retrieved 1,519 studies. There were 50 articles selected for further consideration, of which 31 met our inclusion criteria. Short-term cave exposure studies have investigated visual dysfunction, cardiovascular, endocrine-metabolic, immunologic-hematological and muscular responses in humans. Augmentations of heart rate, muscular damage, initial anticipatory stress reaction and inflammatory responses were reported during caving activity. Prolonged exposure studies mainly investigated whether biological rhythms persist or desist in the absence of standard environmental conditions. Changes were evident in estimated vs. actual rest-activity cycle periods and external desynchronization, body temperature, performance reaction time and heart rate cycles. All studies have shown a marked methodological heterogeneity and lack reproduction under controlled conditions.Conclusions: This review facilitates a further comparison of the proposed physiological impact of a subterranean space analog environment, with existing knowledge in related disciplines pertaining to human operative preparation under challenging environmental conditions. This comprehensive overview should stimulate more reproducible research on this topic and offer the opportunity to advance study design and focus future human research in the cave environment on noteworthy, reproducible projects

    RoboCrane: a system for providing a power and a communication link between lunar surface and lunar caves for exploring robots

    Get PDF
    Lava caves are the result of a geological process related to the cooling of basaltic lava flows. On the Moon, this process may lead to caves several kilometers long and diameters of hundreds of meters. Access to lava tubes can be granted through skylights, a vertical pit between the lava tube and the lunar surface. This represents an outstanding opportunity for long-term missions, for future permanent human settlements, and for accessing pristine samples of lava, secondary minerals and volatiles. Given this, the ESA launched a campaign through the Open Space Innovation Platform calling for ideas that would tackle the many challenges of exploring lava pits. Five projects, including Robocrane, were selected. Solar light and direct line of sight (for communications) with the lunar surface are not available inside lava tubes. This is a problem for any robot (or swarm of robots) exploring the lava tubes. Robocrane tackles both problems by deploying an element (called the Charging head, or CH) at the bottom of the skylight by means of a crane. This CH behaves as a battery charger and a communication relay for the exploring robots. The required energy is extracted from the crane’s solar panel (on the surface) and driven to the bottom of the skylight through an electrical wire running in parallel to the crane hoisting wire. Using a crane allows the system to deal with unstable terrain around the skylight rim and protect the wires from abrasion from the rocky surface and the pit rim. The charger in the CH is wireless so that the charging process can begin as soon as any of the robots get close enough to the CH. This avoids complex and time-consuming docking operations, aggravated by the skylight floor orography. The crane infrastructure can also be used to deploy the exploring robots inside the pit, reducing their design constraints and mass budget, as the robots do not need to implement their own self-deployment system. Finally, RoboCrane includes all the sensors and actuators for remote operation from a ground station. RoboCrane has been designed in a parametric tool so it can be dynamically and rapidly adjusted to input-variable changes, such as the number of exploring robots, their electrical characteristics, and crane reach, etc.Agencia Estatal de Investigación | Ref. RTI2018-099682-A-I0

    Living on the edge: How to prepare for it?

    Get PDF
    IntroductionIsolated, confined, and extreme (ICE) environments such as found at Antarctic, Arctic, and other remote research stations are considered space-analogs to study the long duration isolation aspects of operational space mission conditions.MethodsWe interviewed 24 sojourners that participated in different short/long duration missions in an Antarctic (Concordia, Halley VI, Rothera, Neumayer II) or non-Antarctic (e.g., MDRS, HI-SEAS) station or in polar treks, offering a unique insight based on first-hand information on the nature of demands by ICE-personnel at multiple levels of functioning. We conducted a qualitative thematic analysis to explore how sojourners were trained, prepared, how they experienced the ICE-impact in function of varieties in environment, provided trainings, station-culture, and type of mission.ResultsThe ICE-environment shapes the impact of organizational, interpersonal, and individual working- and living systems, thus influencing the ICE-sojourners' functioning. Moreover, more specific training for operating in these settings would be beneficial. The identified pillars such as sensory deprivation, sleep, fatigue, group dynamics, displacement of negative emotions, gender-issues along with coping strategies such as positivity, salutogenic effects, job dedication and collectivistic thinking confirm previous literature. However, in this work, we applied a systemic perspective, assembling the multiple levels of functioning in ICE-environments.DiscussionA systemic approach could serve as a guide to develop future preparatory ICE-training programs, including all the involved parties of the crew system (e.g., family, on-ground crew) with attention for the impact of organization- and station-related subcultures and the risk of unawareness about the impact of poor sleep, fatigue, and isolation on operational safety that may occur on location

    Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK

    Get PDF
    The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation
    corecore