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Renewed interest in human space exploration has highlighted the gaps in knowledge

needed for successful long-duration missions outside low-Earth orbit. Although the

technical challenges of such missions are being systematically overcome, many of the

unknowns in predicting mission success depend on human behavior and performance,

knowledge of which must be either obtained through space research or extrapolated

from human experience on Earth. Particularly in human neuroscience, laboratory-based

research efforts are not closely connected to real environments such as human space

exploration. As caves share several of the physical and psychological challenges of

spaceflight, underground expeditions have recently been developed as a spaceflight

analog for astronaut training purposes, suggesting that they might also be suitable

for studying aspects of behavior and cognition that cannot be fully examined under

laboratory conditions. Our objective is to foster a bi-directional exchange between

cognitive neuroscientists and expedition experts by (1) describing the cave environment

as a worthy space analog for human research, (2) reviewing work conducted on human

neuroscience and cognition within caves, (3) exploring the range of topics for which

the unique environment may prove valuable as well as obstacles and limitations, (4)

outlining technologies and methods appropriate for cave use, and (5) suggesting how

researchers might establish contact with potential expedition collaborators. We believe

that cave expeditions, as well as other sorts of expeditions, offer unique possibilities for

cognitive neuroscience that will complement laboratory work and help to improve human

performance and safety in operational environments, both on Earth and in space.
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INTRODUCTION

Human space exploration has been limited to orbital space
flight since 1972 (Apollo 17), but due to renewed interest by
traditional government entities and the private sector, this trend
is about to change. Engineering challenges are being overcome
that will allow for a return to the Moon, and extend exploration
to deep-space asteroids and to Mars (Salotti and Heidmann,
2014; Thronson et al., 2016). However, the difficulties of future
missions for which we are least prepared may be those in
the human domain (Kanas and Manzey, 2008; De La Torre
et al., 2012; Bishop, 2013; Sgobba et al., 2017a). Separation
from family and friends, delays in communications with Earth,
distortion of audio and visual signals, and limited privacy and
personal space are important factors for crewmembers of long-
term space missions (Sandal et al., 2006). Even the most highly
selected and trained individual is subject to limitations of human
physiology and psychology. The isolated, confined, extreme and
otherwise unusual physical and social environments of long-
duration missions will approach these limits, and potentially
result in catastrophic failure (for an overview of incidents related
to human error in manned space missions, see Sgobba et al.,
2017a).

Risks to human health and performance can be mitigated
through selection, training, mission and equipment design,
and countermeasures (Kanas and Manzey, 2008), and can
be investigated in a variety of ways (Bishop, 2013). The
human nervous system itself is studied primarily under
laboratory conditions, using neuroimaging methods such as
structural and functional magnetic resonance imaging (fMRI)
and magnetoencephalography (MEG) to observe the brain and
the neural correlates of behavior non-invasively, and through
comparisons between healthy and impaired systems by studying
patient populations. It is also common to probe circuit, cellular,
and molecular-level processes using animal models. While
laboratory work is essential to establish a basis for interpreting
field results and is generally less costly and less constrained
than is research conducted in space, it also has limitations; it
rarely looks at complex environments that are representative of
real operational environments, and laboratory conditions cannot
adequately simulate the unique conditions of spaceflight.

To better understand physiological and cognitive adaptations
of the nervous system under conditions of microgravity, a
series of studies using data collected in flight or pre- and post-
flight has been conducted on postural reactions, eye movements,
spatial orientation illusions, and cognitive responses (reviewed in
Clément andNgo-Anh, 2013). Some of the effects of microgravity
on body fluid distribution (in addition to more physiological
topics of bone density and muscle loss) can be simulated using
bedrest studies in which the head is inclined downwards by
about six degrees (a procedure that has negative consequences for

Abbreviations: EEG, electroencephalography; EMG, electromyography; EOG,
electrooculography; ESA, European Space Agency; fNIRS, functional near infrared
spectroscopy; fMRI, functional magnetic resonance imaging; HRV, heart rate
variability; ISS, International Space Station; NASA, National Aeronautics and
Space Administration (US); PSG, polysomnography; SCR, Skin conductance
response.

mental status, Ishizaki et al., 2002), and by observing the changes
in brain anatomy from pre- to post-flight (Roberts et al., 2017).

Aside from microgravity itself, the most relevant conditions
of spaceflight for many other research questions about the
nervous system can be found or devised on Earth. These “space
analogs” may arise incidentally from other human activities,
such as during Antarctic expeditions, or may be planned
to simulate complex interactions of environmental, physical,
physiological, and social aspects during space missions (Pagel
and Choukèr, 2016). Space analogs can therefore offer platforms
partway between the laboratory environment and the operational
spaceflight context for the scientific study of psychology,
cognition and neuroscience (Keeton et al., 2011). Neurocognitive
changes, fatigue, circadian rhythm alterations, sleep problems,
changes in stress hormone levels, and immune function have
all been observed in situations that mimic some aspects of
prospective human space missions (Pagel and Choukèr, 2016).
A particularly valuable aspect of expedition-based analogs is that
participants are in real, physically demanding and potentially
dangerous situations with additional effects on stress, sleep, and
team interactions.

In addition to informing future space mission design,
space analog environments offer possibilities for neuroscientists
to investigate brain function and behavioral performance in
unique situations. Extending the study of human neuroscience
outside the lab could lead to insights for basic research and
benefits for safety-critical occupations (i.e., medical teams,
shift-workers, firefighters, or air traffic controllers). However,
opportunities for mutual exchange have yet to be fully exploited,
likely due to limited contact between laboratory researchers
and expedition experts, and because portable equipment for
measuring neurophysiological signals has only recently reached a
level of maturation necessary to make high quality measurements
in situ.

Our objective here is to foster an exchange between cognitive
neuroscientists, and cave expedition and space analog experts,
by providing an overview of how laboratory and field research
in neuroscience and related areas (i.e., cognition, cognitive
psychology, neuropsychology) can be bridged, using caving
expeditions as an exemplar space analog and expedition
environment.

SCOPE AND TERMINOLOGY

We first discuss the properties of available space analogs
and their evaluation and discuss the particular characteristics
of caves that make them suitable for exerting the physical
and psychological challenges of spaceflight, in order to assist
researchers’ selection of missions appropriate for their research
questions. We review work that pertains to human neuroscience
and cognition conducted to date in caves, and then explore how
the few focus areas of that early work can be broadened to a range
of current topics. We then outline tools and techniques that are
suitable for use in cave environments. Finally, we suggest how
researchers might establish contact with organizations and teams
that conduct expeditions.
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Neuroscience, cognitive science, neuropsychology, and
psychology are broad overlapping fields that may each study
the same or related processes with numerous tools. We will
not attempt to distinguish between the purviews of these
fields here; research questions from any domain that concern
environment-brain-behavior relationships that affect human
performance are our focus. These topics at times overlap with
human physiology, human factors, sports psychology, and social
psychology. Although it makes little sense to study human
performance in isolation from other physiological processes
and from a physical and social context, other resources exist
that have dealt specifically with these topics. For references on
medical and physiological matters (i.e., bone loss, radiation,
extravehicular activities, balance, motion sickness and nutrition),
and for information on physiological and neurophysiological
studies conduced to date on the ISS (see Buckey, 2006; Clément
and Ngo-Anh, 2013). For space flight human factors research
methods, accident analysis and prevention, and human-
automation interaction (see Sgobba et al., 2017b; Kanki, 2018b;
Marquez et al., 2018; Wilson, 2018). Psychology, mental heath,
team performance and group interactions in space are reviewed
in (Suedfeld and Steel, 2000; Manzey, 2004; Kanas and Manzey,
2008; Kanas, 2015; Salas et al., 2015; Pagel and Choukèr,
2016; Sandal, 2018). For a discussion of current knowledge
on neuroplastic changes in the human central nervous system
associated with spaceflight (actual or simulated) as measured
by magnetic resonance imaging-based techniques (see Van
Ombergen et al., 2017). Cognitive functions, human error, and
workload and fatigue are relevant to expedition cognition and
are amenable to study in the cave environment as discussed here;
useful references for further reading include (De La Torre et al.,
2012; Gore, 2018; Kanki, 2018a).

SPACE ANALOGS AND ASSESSMENT OF
SUITABILITY

The National Aeronautics and Space Administration (NASA),
European Space Agency (ESA), Roscosmos State Corporation for
Space Activities, Canadian Space Agency (CSA), and other space
exploration organizations have created a variety of terrestrial
and aquatic space analogs, as well as simulated missions. Each
analog simulates a subset of space or extra-terrestrial conditions.
Those analogs which are predominantly used to test equipment,
validate procedures, and gain an understanding of system-
wide technical and communication challenges emphasize the
equivalence of physical factors, such as terrain, reduced gravity
and communications delays; those with natural sciences foci
might emphasize geological and biological properties of the
analog (e.g., the yearly NASA/ESA–funded Arctic Mars Analog
Svalbard Expedition in Norway is used for testing astrobiological
hypotheses).

Other analogs have a human focus or mixed scientific uses
including human research. For the purposes of human activities,
the relevant conditions for a particular topic of interest may
include additional factors that affect a crew member’s ability to
carry out their work efficiently and safely. An important principle

for assessing the relevance of various extreme environments
as viable analogs for space or providing the basis for cross-
comparison is that it is the experience of the environments
rather than the environments themselves that must be considered
(Suedfield, 1991; Bishop, 2013). Thus, an environment may
provide an excellent analog for spaceflight without physically
resembling it, provided that many of the stressors exerted upon
human participants are paralleled. For example, as in space, the
external environment in the Antarctic winter requires specialized
equipment, planning, and procedures in order to safely conduct
operations outside the habitat. Morphew enumerated the
stressors of (long-duration) spaceflight (see Table 1; Morphew,
2001).

In Antarctica, McMurdo Antarctic Research Station
(population > 1,000) is used by NASA as a Mars analog because
of terrain, temperature, and taxing conditions comparable to
those of Mars’ surface (Morris and Holt, 1983). Psychiatric
studies at McMurdo station have provided evidence that
prolonged isolation can increase the risk for mental health
disorders (Kanas, 2015). ESA collaborates with the smaller
Franco-Italian Antarctic base Concordia (population∼15)
(Tafforin, 2009), at which some human research is conducted,
for example on sleep quality and adaptation to high altitude
conditions (Tellez et al., 2014). Although aquatic environments
are not precise models for the physical conditions of asteroid,
moon, or planetary exploration, underwater missions do
mimic the stressors associated with safety, communication,
and technological logistics related to long-term spaceflight
and exploration. The NASA Extreme Environment Mission
Operations (NEEMO) is an underwater research lab where crews
are sent on missions up to 2 weeks long to focus on testing
equipment and procedures for future spacewalks (Todd and
Reagan, 2004), and the Pavillion Lake Research Project (PLRP;
CSA/NASA) uses remotely operated, autonomous, and human
explorers to investigate microbiology and remnants of early life.

Simulated missions provide a similar physical environment to
a spacecraft or base habitat, as well as activities and schedules
resembling those of astronauts. One of the most ambitious
of such projects in recent history (2007, 2011) was Mars500
(ESA/Russian Institute for Biomedical Problems). In the longer
of two experiments, six volunteers were confined in a mock-
up spacecraft for over a year and a half in order to simulate
a complete Mars mission. Mars500 included a number of
experiments on human brain function and behavior whose
results have been published. Research topics included the effect
of exercise on prefrontal cortex activity (Schneider et al., 2013);
circadian heart rate variability during isolation (Vigo et al., 2013);
and the relationships between cortisol levels on brain activity,
sleep architecture, and emotional states (Gemignani et al., 2014);
sleeping patterns (Basner et al., 2013); and the relationship
between feelings of loneliness and cognitive functions (Van
Baarsen et al., 2012). Other recent/ongoing projects are exploring
perception of time, sleep quality, concentration, and their
biological clocks over periods of weeks (Lunares, Poland), and
crew selection, team processes, self-guided stress management
and resilience training, crew communications and autonomous
behavioral countermeasures for spaceflight in missions of several
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TABLE 1 | Stressors of long duration space flights (Morphew, 2001).

Physiological/Physical Psychological Psychosocial Human Factors Habitability

Radiation Isolation and

confinement

High team coordination

demands

High and low levels of workload Limited hygiene

Absence of natural time

parameters

Limited possibility for

abort/rescue

Interpersonal tension

between crew/ground (not

common, but possible

with some team

configurations)

Limited exchange of info/comms

with external environment

Chronic exposure to

vibration and noise

Altered circadian

rhythms

High-risk conditions and

potential loss of life

Family life disruption Limited equipment, facilities and

supplies

Limited sleep facilities

Decrease in exposure to

sunlight

System and mission

complexity

Enforced interpersonal

contact

Mission danger and risk

associated with: equipment

failure, malfunction, damange

Lighting and illumination

Adaptation to microgravity Hostile environment

(possible in some caves)

Crew factors (i.e., gender,

size, personality, etc.)

Adaptation to the artificially

engineered environment (some

parallels to unusual natural

environment)

Lack of privacy

Sensory/perceptual

deprivation of varied

natural sources

Alterations in sensory

stimuli

Multicultural issues Food restrictions/limitations Isolation from support

systems (likely limited

effect due to mission

durations)

Sleep disturbance Disruptions in sleep “Host-Guest” phenomenon Technology-interface challenges

(possible with some missions)

Space Adaptation Sickness

(SAS)

Limited habitability (e.g.,

limited hygiene)

Social conflict Use of equiment in microgravity

conditions (not present, but some

parallels in 3D cave environment)

Stressors that may be paralleled in cave environments are highlighted (bold, italics).

months (Hawaii Space Exploration Analog and Simulation; HI-
SEAS; NASA/University of Hawaii).

Training courses that are designed as space analogs have also
been proposed as suitable environments in which to conduct
human research. ESA’s Cooperative Adventure for Valuing and
Exercising human behavior and performance Skills (CAVES)
program, in which astronauts conduct scientific and exploration
tasks in subterranean environments, is one such possibility
(Strapazzon et al., 2014). NASA uses the National Outdoor
Leadership School (NOLS) to tests the ability of astronauts and
candidates to work together in a challenging outdoor setting
(Alexander, 2016). For more information about space analogs,
please refer to Keeton et al. (2011), Lia Schlacht et al. (2016), Pagel
and Choukèr (2016), and Kanki (2018b).

In order to categorize the wide variety of earth-space
analogs, NASA created an Analog Assessment Tool (described
in NASA/TP−2011-216146, Keeton et al., 2011) that helps
investigators select an analog based on study goals. Initially,
the tool arranges the analogs based on importance weightings
where the research characteristics (such as team size or degree of
physical isolation) and utility characteristics (such as relevance
of the crew’s tasks or the cost of the study) are proposed.
Fidelity weightings are calculated for each proposed analog based
on the research and utility characteristics including the degree
of their isolation, hostility, confinement, risk, prior knowledge
(the accessibility of information about the environment that the
mission crew has access to prior to expedition), natural lighting,
logistics difficulty, remote communications, science opportunity,

similarity to planet surface, and sensitivity (susceptibility to
damage by humans of the environment). Both sets of weightings
are combined to produce an overall ranking for all proposed
analogs according to the goals of the mission (Keeton et al.,
2011). ESA has also analyzed facilities that are suitable to be
used as lunar analogs (Hoppenbrouwers, 2016). Table 2 presents
a synthesis of the criteria commonly used to evaluate terrestrial
space analogs against a research project’s goals.

CAVES AS SPACE ANALOGS

Approximately 20% of Earth’s landmass is karstic, i.e., consisting
of topography formed from the dissolution of soluble rocks
such as limestone, dolomite, and gypsum, and characterized
by sinks, ravines, caves, and underground streams (Ford and
Williams, 2007). Only a small portion has been explored, but
many sites attract people for recreational and scientific purposes.
It is estimated that at least 2,000,000 people in the US alone
visit caves each year (Hooker and Shalit, 2000) and members
of national speleological societies (e.g., approximately 10,000
members in the US National Speleological Society and about
7,000 in the French Federation of Speleology, gleaned from their
websites) suggest that the number of people likely to be involved
in rigorous expeditions worldwide is in the range of tens of
thousands. Caves are, in fact, interesting to a variety of scientific
disciplines, including geology, hydrogeology, and biology, but
they also represent unusual challenges for the people who work,
explore, rescue, and temporarily live within them. The majority
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TABLE 2 | Summary of criteria for evaluating terrestrial space analogs.

Criterion Examples and notes

Isolation/Confinement High isolation in underwater/extreme

environments like

desert/Antarctica/caves

Risk Underground, underwater, and polar

missions pose more risk due to

climate and proximity of medical

facilities

Prior knowledge (magnitude to which

information about the environment is

available to crewmembers before

their mission)

Artificially simulated missions are

easier to predict than underwater

analogs. Underground missions can

offer a unique combination of

known/unknown

Natural lighting Research-topic dependent, e.g.,

perceptual errors, circadian rhythm,

etc.

Logistics difficulty (measure of

resources needed to constantly

supply crewmembers)

Land-based missions like those

taking place in the desert provide

easier re-supplying than underwater

and underground missions such as

NEEMO/CAVES

Remote communications (capability

to exchange information with

crewmembers not physically taking

part in the analog mission)

Land-based missions like those done

in Antarctica or in the desert provide

easier communication than

underwater and underground

missions such as NEEMO/CAVES

Similarity to planet surface Desert and underground missions

simulate the appearance of the

Martian surface

Sensitivity (susceptibility of

environment to disruption by

human-activities)

Underwater and underground

missions and polar regions may be

sensitive to ecosystem disruption

of deaths of cave explorers are caused by falls related to human
error, followed by rock falls, drowning, and hypothermia (Stella-
Watts et al., 2012; Stella et al., 2015). Science conducted on cave
expeditions therefore has the potential to significantly increase
research to the benefit of spacefarers, and to improve safety in a
widely practiced activity.

Caves have been identified as a naturalistic space analog for
training purposes (Bessone et al., 2013; Strapazzon et al., 2014;
Pagel and Choukèr, 2016). As space analogs, caves feature many
logistic challenges and stressors (e.g., isolation and confinement,
risk and reliance on technical equipment for safety, limited
prior knowledge of the environment, unusual lighting and
sensory conditions, communication and supply difficulties). The
spaceflight stressors highlighted in Table 1 (in bold, italics)
indicate those spaceflight stressors which are frequently present
in caves conditions. Although speleological expeditions may vary
in their coverage according to mission, team, and environmental
properties, strong overlap is observed. Critically, cave expeditions
(as well as some aquatic and polar analogs) fulfill the important
psychological factor of being somewhat risky and safety-critical
environments in which participants are reliant on equipment
and teammates, with limited and slow rescue options (Stella-
Watts et al., 2012; Bessone et al., 2013). Perceived risk is likely
to cause neurophysical changes that affect many aspects of

brain and behavior, from interpersonal interactions to sleep and
cognitive function (Pagel and Choukèr, 2016). Cave exploration
also requires discipline, teamwork, technical skills and a great
deal of behavioral adaptation (Bessone et al., 2013). Martian
caves and lava tubes have been proposed as suitable locations
in which to construct habitats on Mars, due to thermal stability
and shielding from radiation and micrometeorites (Moses and
Bushnell, 2016), which would further increase the similarity of
the model’s physical environment.

For these reasons, the European Space Agency (ESA) has
carried out training activities in the subterranean environment
since 2008. The multidisciplinary mission known as CAVES is
used for training astronauts of the International Space Station
(ISS) Partner Space Agencies (USA, Russia, Japan, Canada, and
Europe) (Bessone et al., 2013; Strapazzon et al., 2014). During
the 6-day mission, astronauts conduct exploration and scientific
activities under similar scheduling andmission conditions as they
will later experience in space as a means of eliciting and coaching
behavioral competences (Bessone et al., 2008). The science
program includes environmental and air circulation monitoring,
mineralogy, microbiology, chemical composition of waters, and
search for life forms adapted to the cavern environment, and
increasingly, human experiments.

As CAVES participants are highly selected astronauts-in-
training whose objectives are to explore and conduct scientific
studies, it lies toward the higher-fidelity end of the spectrum of
cave analog possibilities, and of possible experimental control.
However, its capacity to support multiple experiments is limited
by tight personnel scheduling. Expeditions of other organizations
may therefore be more suitable for a given research question,
taking into consideration the specific expedition’s space analog
suitability (for recent examples of cave-based human research
and a description of the cave conditions and mission, see Stenner
et al., 2007; Antoni et al., 2017; Pinna et al., 2017). Cave
expeditions may vary due to differences in cave environments
(temperature, presence of water, remoteness and access, difficulty
level, etc.), mission (duration, objectives, group size, group
composition), organization (scientific, exploration, amateur),
and the demographics of participants (age, sex, training, culture,
language). These factors affect the nature of the data collection
that is possible as well as its quality and applicability to
other groups. In the section entitled “Connection to in-field
study experts and cave community” we list some of the
main speleological meetings and organizations through which
expeditions appropriate to a research program might be found.

A BRIEF HISTORY OF EARLY
NEUROSCIENTIFIC WORK CONDUCTED
IN CAVES

Health outcomes of humans living in isolation have been
studied over the last 80 years. In the 1960s, researchers began
to investigate how biological rhythms were affected when
living underground, without “zeitgebers” (i.e., environmental
cues that can alter the internal clock, the study of which is
now included in the field of chronobiology). Early studies
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involving isolation in subterranean conditions are listed in
Table 3, along with their findings. These studies, as well as those
later studies found in Table 4, were identified by a literature
search of life science electronic databases (Medline: 1966-
Present, NASA Technical Reports Server: 1915-Present, Google
Scholar: Present, Worldcat: 1971-Present, OPAC: 1831-Present,
and PubMed: 1997-Present). Search terms included “cave/s,”
“cave” AND “isolation” AND “human,” “free-running isolation,”
“potholing/ers,” “caving,” “social isolation,” ‘subterranean” AND
“isolation,” “spelunking,” and “underground environment.”
Because many early studies were only reported in their
original language, we additionally searched for Italian: “grotta/e,”
“isolamento in grotto,” “isolamento spazio temporale,” and
“Montalbini” (author); French: “grotte,” “sejours souterrain,”
“Siffre” (author); and Spanish: “cueva,” “aisolamento in cueva,”
“permanecer bajo tierra,” and “spelunka.” All studies reporting
results from human subjects in subterranean environments

with a neuroscience or cognitive component were retained (16
reports).

Reports from the early to mid 1900s on the effects of isolation
on the human body are limited in their sample size and lack
standardized methodology (Halberg et al., 1970). One of the first
peer-reviewed studies to examine chronobiology was performed
by Mills, who analyzed chronobiological aspects of his subject
throughout 105 days in subterranean isolation (Mills, 1964).
From the 1960s to the mid-1970s, similar studies documented
renal rhythms, sleep-wakefulness cycles, time estimation, internal
temperature, heart rate, and even menstrual cycles of their
subjects as biomarkers for changes of their internal clocks
(see Table 3). The majority of these earlier studies using
basic physiological measures found that a rest-activity cycle
persisted in the absence of any environmental synchronizer
or deliberate scheduling, although it appeared to be slightly
desynchronized/longer than 24 h (∼24.5 h). These findings were

TABLE 3 | Subterranean studies reported from 1938 to 1974.

Study Subject(s) Days in isolation Main findings

1. Kleitman 1938 (reported

in Wolf-Meyer, 2013)

2 adult males (together;

Kleitman and Richardson)

32 The goal was to change the circadian sleep-wake rhythm to a 6

day week (6 days of 28 h). One subject was able to achieve this

28 h sleep-wake rhythm but the other subject had trouble doing

so and kept his initial 24 h sleep-wake rhythm

2. Mills, 1964 1 adult male (Workman) 105 Subject went to sleep and awoke later each day (∼24.5 h clock);

potassium excretion followed a similar cycle

3. Aschoff, 1965 1 adult male 10 Subject exhibited very unstable sleep-wake rhythm & urinal

excretion rhythm but eventually stabilized at ∼25.9 h

4. Halberg, 1965 (Comptes

Rendus de l’Académie des

Science)

1 adult male (Siffre) 62 The heart rate and sleep-wake cycles shifted to about 24.6 h;

significant desynchronization of circadian sleep-wake rhythm was

evident

5. Reinberg et al., 1966 1 adult female (Laurens) 88 The sleep-wake rhythm became slightly lengthened (24.5 h);

menstrual cycle was shortened (by 3 days); core temperature

cycles remained unchanged with respect to pre-isolation baseline

6. Siffre et al., 1966; Ghata

et al., 1969, see also

discussion in Halberg et al.,

1970

2 adults (1 male, 1 female;

Senny and Laurens),

separately isolated

Male: 125

Female: 88

Temporary modifications of the visual functions, mainly on the

speed of the chromatic vision were seen (pre-post isolation

testing); circadian rhythms in urinary excretion and rectal

temperatures were maintained but sleep-wake cycles were slightly

delayed to 24.5 h

7. Fraisse et al., 1968 2 adult males (Siffre and

Mairetet), separately isolated

Male (Siffre): 58 Male

(Mairetet–note that different

aspects of this experiment

were reported in several

studies): 174

The sleep-wake circadian rhythm was slightly extended (∼24.5 h)

for Siffre; Mairetet developed circabidian (48 h) sleep-wake rhythm;

subjects’ estimation of short time intervals (i.e., counting to 60 s)

were the same as time estimations prior to isolation but subjects’

estimation of longer time intervals (i.e., how many hours had

passed since waking up and eating lunch or dinner) was

underestimated by ∼45%

8. Colin et al., 1968 1 adult male (Mairetet) 174 Rectal temperature period fluctuated between 18 and 31 h but

eventually stabilized at a 24.5 h rhythm during the last 4 months;

sleep-wake cycle was unstable throughout the whole experiment

ranging from 24 to 46 h rhythms

9. Apfelbaum, 1969

(La Presse Medicale)

7 adult females (all together

in isolation but slept in 2

tents)

14 People sharing the same tent had the same rhythm; a sleep-wake

circadian rhythm was maintained for both groups, but still was

extended in duration (∼24.7 h)

10. Oléron et al., 1970 1 adult male (Mairetet) 174 Time estimation (counting to 60 s) accelerated and reaction time

increased in isolation; a circabidian (48 h) sleep-wake rhythm

developed

11. Mills et al., 1974 1 individual adult male

(Lafferty)

127 Activity habits approximated a period of 25.1 h whereas urinary

electrolyte excretion indicated a shorter period, of 24.6 h
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interpreted as evidence that the internal clock does not need
external cues such as intense light to regulate its biological
rhythm (Halberg, 1965). Social cues (e.g., subjects sleeping in
the same underground conditions nearby one another, subjects
eating meals together) were also shown to affect circadian
rhythm, as those of subjects isolated together tended to align
(Apfelbaum, 1969).

Although some of the studies in Table 3 were able to look at
physiological parameters such as the effects of isolation on vision,
measures were mostly implemented prior to and after isolation
as opposed to within the cave environment itself. During the
expedition, circadian rhythms were observed using core body
temperature, sleep-wake cycles, and subjective estimation of
time.

Electroencephalography (EEG), electromyography (EMG),
and electrooculography (EOG) are techniques that are used to
record electrical activity in the brain, skeletal muscles, and eye
movements, respectively. Due to advances in electrophysiological
tools in the mid 1970s, it became possible to make physiological
and neurophysiological measurements during subterranean
isolation studies. One of the first cave research studies using
EEG and EMG was performed by Chouvet et al. (1974), who
characterized sleep architecture during isolation (i.e., the pattern
of rapid eye-movement or REM sleep; light sleep or stages 1
and 2; and deep or slow-wave sleep, SWS, that occurs over a
nights’ rest). From the mid-1970s to the 1990s, similar studies
documented the effects of isolation with limited external time
cues on circadian rhythms using EEG, EMG, and EOG, in
addition to the previously mentioned physiological measures.
These studies are listed inTable 4, along with their main findings.

The studies presented in Tables 3, 4 represent pioneering
efforts investigating circadian rhythms in the absence of an
externally imposed day-night cycle. Early observations that
humans have endogenous rhythmicity in biological processes
and alertness levels that can be modified by external cues
stimulated further research on human circadian rhythms and
sleep cycles which have grown into fields of scientific study
with implications for health and disease (Kirsch, 2011). Many
of these studies are noteworthy for their pioneering efforts,
ingenuity of design, and commitment of their subjects; isolating
individuals for long periods would now be considered highly
unusual (if not unethical; although causality certainly cannot be
inferred, one of the subjects isolated alone for 3 months later
died by suicide Hillman et al., 1994b). However, today the data
generated by these studies are primarily of interest for historical
reasons; the very small sample sizes and lack of experimental
control and methodological standardization between studies
limit the interpretability and generalizability of the findings,
and the tools and practices of measurement of human
psychology and physiology have evolved considerably in the
interim. Later work showed that some of the findings reported
above were likely caused by the experimental procedures.
Most notably, many studies in Tables 3, 4 suggested that
the endogenous human circadian cycle is closer to 25 than
24 h. This was later attributed to phase shift due to exposure
to bright artificial light that subjects were allowed to use
while awake; in the absence of bright light, the intrinsic

pacemaker is in fact very close to 24 h (Czeisler et al.,
1999).

RESEARCH TOPICS: OPPORTUNITIES,
CONSIDERATIONS, AND
COLLABORATIONS

Studies in caves to date have only concerned themselves with a
few of the topics for which the cave environment makes a good
space analog (i.e., isolation, lighting). Figure 1 presents some
of the (interrelated) topics within neuroscience, cognition, and
psychology that could be usefully studied in cave expeditions, and
might benefit from an intermediate research platform between
the laboratory environment and space itself.

Circadian Rhythm and Sleep
Sleep quantity and quality, circadian rhythm, and resulting
alertness levels and performance proficiency are often altered
in spaceflight for environmental and operational reasons (Mallis
and DeRoshia, 2005). Due to logistic challenges with sleep
measurements in the spaceflight environment, only a few
astronauts have been studied using polysomnography (PSG),
the gold-standard method for evaluating sleep. According
to astronauts’ subjective reports and objective recordings of
neurophysiology (i.e., EEG, PSG) and of activity levels (i.e.,
actigraphy; wrist-worn accelerometers) human sleep has been
reported to be shorter and shallower during various missions
including Skylab missions (Frost et al., 1975, 1976), space shuttle
missions (Monk et al., 1998; Dijk et al., 2001), Mir missions
(Gundel et al., 1997), and ISS Expeditions from 2006 to 2011
(Barger et al., 2014), compared to sleep on the ground. Barger
and colleagues additionally found that the use of sleep-promoting
drugs, which are known to alter sleep architecture and cognitive
performance, were pervasive during spaceflight; the authors
argued for the need to develop effective countermeasures to
restore normal sleep in space (Barger et al., 2014).

The degree to which spaceflight sleep problems are caused
by altered physiology due to the effects of microgravity
itself or other factors such as isolation and confinement,
noise, changes in physical activity, long or unusual sleep-wake
and crew shift-work schedule, over-excitation, demographics,
rapid succession of light and dark exposure, and ambient
temperature is not yet known (Gundel et al., 1997; Pandi-
Perumal and Gonfalone, 2016). However, results from space
analogs also report significant changes in sleep patterns during
Antarctic overwintering (Steinach et al., 2016) and during
extended confined isolation (Basner et al., 2013), respectively,
suggesting that sleep disturbance can be usefully studied in space
analog conditions. In caves, mission-like levels of activity and
scheduling, psychological pressures relating to factors such as risk
and interpersonal interaction, new surroundings, temperature,
humidity, and noise can all affect sleep timing, duration,
and quality. Cave expedition constraints can also introduce
circadian disturbances; for example, it is not uncommon for
cave exploration activities to involve extended periods of
wakefulness and near-continuous activity (>24 h and even up

Frontiers in Human Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 407

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Mogilever et al. Expedition Cognition: Neuroscience in Caves

TABLE 4 | Subterranean studies reported from 1974 to 1994.

Study Subjects Number of days in

isolation

Main findings Neurophysiological

measures

1. Chouvet et al., 1974 3 adult males (Mairetet,

Chabert and Engelender),

separately isolated

2 males in 1968 (Chabert

and Engelender): 150 1

male in 1966 (Mairetet) 174

Subjects developed a circabidian/bicircadian

rhythm (34 h of wakefulness and 14 h of sleep);

the duration of sleep stages 3 and 4 was

correlated with the duration of the previous

waking period, providing evidence of

homeostatic regulation mechanisms in sleep

regulation

EEG, EMG, EOG

2. Siffre, 1987 (Proceedings

of a Colloquium on “Space

& Sea”)

Review: 7 adults from

previous studies, separately

isolated

60–174 5 subjects developed a circabidian/bicircadian

rhythm; REM sleep duration is directly

proportional to the duration of sleep (same

subjects as in Chouvet et al., 1974); REM and

SWS increased at the cost of lighter sleep

stages (1 and 2) when the sleep wake cycle

desynchronizes from circadian to circabidian

EEG, EMG, EOG

3. Sanchez da la Pena et al.,

1989 (Proceedings. Second

Annual IEEE Symposium on

Computer-based Medical

Systems)

1 adult female (Follini) 97 Subject maintained circadian systolic, diastolic,

and mean arterial pressure rhythms that were

slightly but significantly greater than 24 h. A

circaseptan rhythm for heart rate was observed

Heart rate monitor only

4. Sonnenfeld et al., 1992 1 adult female 131 Sleep-wake cycle began to deviate from 24h

after 30 days of isolation, and thereafter ranged

from 25 to 42 h in cyclical patterns

None reported

5. Hillman et al., 1994a,b

(New Trends in Experimental

and Clinical Psychiatry)

1 adult female (Le Guen) 103 Subject maintained a circadian sleep-wake

rhythm but it varied slightly throughout the

period of isolation, to a period somewhat

longer than 24 h. Other physiological

measurements such as urinary water excretion

rate and caffeine metabolism developed

circasemiseptan (half-weekly) rhythms (the

authors attributed these rhythms to exposure

to cosmic rays)

None reported

Note that “circabidian” refers to 2-day (∼48 h) rhythms, whereas “bicircadian” refers to twice-daily (∼12 h) cycles.

to 40 h), when sleeping within the cave is logistically difficult
or impossible. These extended periods of wakefulness parallel
those in spaceflight which can occur for operational requirements
for example rendezvous and docking procedures, and in
emergencies. Some cave expeditions may last weeks and require
crew to adapt to sleeping and working conditions, providing
a situation analogous to longer mission phases. Even when a
normal sleep-wake cycle is maintained, important zeitgebers are
absent or altered in caves, as in space exploration.

Inadequate sleep can affect daytime alertness levels, response
time, vigilant attention, and error rates, learning, complex
task performance, emotional evaluation, risk assessment, and
fatigue; however, effects differ according to the type of task and
degree of its complexity, characteristics of the individual, and
the nature of the sleep deprivation (i.e., acute deprivation, or
chronic restriction; Wickens et al., 2015; Bermudez et al., 2016;
Havekes and Abel, 2017; Krause et al., 2017). In meta-analyses,
mental fatigue was shown to also have some effect on physical
and athletic performance (Van Cutsem et al., 2017; McMorris
et al., 2018), which has relevance for more physically strenuous
expedition activities such as climbing or extravehicular activities.
Hypnotics (i.e., drugs used to treat insomnia) reduce sleep

latency and increase sleep duration, but the resulting sleep shows
abnormal sleep architecture (Cojocaru et al., 2017) and does
not entirely restore impaired cognitive performance (Verster
et al., 2016). Because sleep architecture is important to learning
and memory consolidation (Diekelmann and Born, 2010; Ros
et al., 2010), these effects are especially undesirable wherever
learning is required, as it is during exploration and spatial
navigation. People are not always good at assessing their own
performance levels; devising means of assessing readiness to
perform safety-critical tasks is important, as is knowing how
well self-reported alertness levels accurately reflect subsequent
cognitive performance (Boardman et al., 2017), and how well
performance can be improved in the short term. Caffeine can
mitigate some of the next-day cognitive performance effects of
reduced sleep in a somewhat predictable fashion (Ramakrishnan
et al., 2015). Interestingly, an individual’s performance
impairments due to sleep restriction, or enhancement due
to stimulants like caffeine, may not translate directly into
group performance impairments and improvements, due to
mediating factors of group dynamics (Faber et al., 2017), which
would also be useful processes to understand under expedition
conditions.
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FIGURE 1 | Potential topics in psychology, cognition, and neuroscience that could benefit from study in subterranean and expedition environments. Caves could also

be a useful context within which to evaluate and optimize the effects of equipment interfaces and operational protocols on human cognition and performance, as well

as within which to test the effectiveness of countermeasures.

In addition to inadequate sleep quality and duration, sleep
timing affects performance. Recent progress on the molecular-
genetic basis of circadian rhythms indicates that they affect
cognition, learning andmemory, mood, andmetabolism directly,
in addition to indirectly through their influence on sleep
(Kyriacou and Hastings, 2010). The effect of sleep restriction
and circadian misalignment is a topic of concern in occupations
that involve shift-work like emergency medicine, in which short-
term cognitive deficits have been related to shift work schedules
(Machi et al., 2012).

Sensation and Perception
Caves offer unusual sensory inputs that affect waking behavioral
performance. In caves as in enclosed artificial environments
such as spacecraft, olfactory input is monotonous sometimes
negative (i.e., body odors), contributing to habitability and
comfort issues. Noise is pervasive in artificial environments,
and is known to cause annoyance, disturb sleep and daytime
sleepiness, and to negatively affect patient outcomes and
staff performance (in hospitals), increase the occurrence of
hypertension and cardiovascular disease, and impair cognitive
performance (Stansfeld and Matheson, 2003; Basner et al.,
2014a). Operational limits on both continuous and intermittent
noise exposure have been established for spaceflight, in order to
provide an acceptable environment for voice communications

and for restful sleep (Allen et al., 2018). However, recent evidence
suggests that even low levels of noise, within the established
limits, can cause neurophysiological changes that negatively
affect health, learning, and memory performance (studied
in rodents Cheng et al., 2011). In humans, noise increases
the cognitive load associated with understanding speech and
communicating, and the ability to do more than one task
simultaneously (Rönnberg et al., 2010). Many cave environments
have continuous background noise from wind and water
movement that could be used to study its effect on individual
stress levels, concentration, cognitive performance, fatigue,
workload, communication, and interpersonal interaction.

Lighting in caves is produced by headlamps, which create
partial, focal illumination of complex three-dimensional spaces
and complicates movement and navigation. These perceptual
conditions are likely to increase cognitive load and contribute
to dual-task performance decrements, including communication
and teamwork. The type and distribution of lighting on the
exterior of spacecraft affects human visual performance and
is an important factor in spacecraft design, particularly for
extravehicular activities (Rajulu, 2018). Future extra-terrestrial
cave/lava tube exploration may create related challenges.

Higher-level perceptual skills are also relevant for spaceflight.
Visuo-spatial orientation skills refer to the ability of individuals
to make use of information available in the environment to

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 407

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Mogilever et al. Expedition Cognition: Neuroscience in Caves

efficiently orient and navigate. This function relies on cognitive
processes such as memory, attention, perception, mental
imagery, and decision-making skills (Ekstrom and Isham, 2017).
It allows individuals to become familiar with the environment
and to integrate information about self-position and orientation
into a spatial mental representation of the surroundings, known
as a cognitive map (Tolman, 1948; Arnold et al., 2013). Cognitive
maps allow any target location from anywhere within the
environment to be reached, even by following novel routes
when a known pathway is unavailable (Epstein et al., 2017). An
accurate mental representation of the environment is crucial for a
variety of cognitive tasks in near-space, such as those that involve
reaching and grasping objects from a given location within the
environment or directing attention to elements in space that are
not necessarily within our focal vision. These skills are necessary
for maneuvering safely in microgravity, during extra-vehicular
activities, and for exploration of planet surfaces (Clément and
Reschke, 2008).

The ability to form accurate mental representations of the
environment implies the integrity of a complex extended network
in the brain (Ekstrom and Isham, 2017; Ekstrom et al., 2017).
Within this network, regions in the medial temporal lobe (i.e.,
hippocampus and parahippocampal cortex) are involved in
the learning and memory aspects of orienting and navigating
through the environment (Epstein et al., 2005; Iaria et al.,
2007). Interestingly, these networks are among those implicated
in sleep-related processes of memory consolidation, notably of
memory involving spatial and contextual elements (Diekelmann
and Born, 2010). Other brain regions used while moving
throughout the environment and locating elements within
it include the posterior parietal cortex, which is critical for
integrating different sensory information processed through our
visual, vestibular, somatosensory, and proprioceptive systems
(Posner et al., 1984; Andersen, 1997); and the frontal and
prefrontal cortex which are necessary for executive functions
such as planning, mental imagery, and working memory (Owen
et al., 1990; Petrides and Baddeley, 1996). Recent studies have
shown that even a minimal functional alteration (not damage
per se) of the neural networks described above is associated
with impairments of spatial processing (He et al., 2007; Iaria
et al., 2014; Kim et al., 2015). As with many complex skills,
maintaining expertise in spatial orientation and navigation also
requires consistent practice; reliance on GPS technology for
example, which offloads the cognitive demands of navigation,
is associated with lower navigational expertise (Ishikawa et al.,
2008) and lower hippocampal volume and connectivity (Maguire
et al., 2000; Iaria et al., 2014). Spatial orientation and navigation
are a clear example of a cognitive process in which one must “use
it or lose it” (Shors et al., 2012).

Stress, Decision-Making, and Risk-Taking
Behavior
Factors affecting physiological and psychological well-being like
increased social isolation, confinement, altered sleep, and higher
stress levels are also known to affect cognitive skills. For example,
visuo-spatial orientation and its neural correlates (Glasauer and

Mittelstaedt, 1998; Stranahan et al., 2006; Lukavský, 2014; Valera
et al., 2016). Poor quality sleep leads to slower performance
and more errors navigating a newly-learned environment (Valera
et al., 2016), and chronic stress is known to produce spatial
orientation deficits (Mizoguchi et al., 2000; Kleen et al., 2006),
likely by perturbing the neurochemistry of supporting networks
(Conrad, 2008, 2010; Li et al., 2015). Spatial confinement may
also have more direct effects on spatial orientation, for instance,
Lukavský (2014) identified a marked difference in scene memory
in the six participants of theMars500 project. Relative to controls,
these individuals developed a greater bias toward “boundary
extension” while viewing distant scenes, i.e., falsely recalling a
wider field of view or more distant perspective from these visual
stimuli. Lukavský hypothesized that the lack of interaction with
distal objects and scenes due to extended stays in a relatively
confined environment will result in the deterioration of the
perception and strategy use within larger environments.

The hippocampus and prefrontal cortex have a well-
documented sensitivity to some of the negative factors associated
with subterranean explorations. Rodents housed in confined,
isolated, or simple environments have smaller hippocampi,
comprised of fewer neurons (Kempermann et al., 1997) with
fewer dendritic spines (Leggio et al., 2005), less neurogenesis
(Olson et al., 2006), and poorer spatial abilities (Nilsson et al.,
1999; Leggio et al., 2005). While the typical experiences of a lab
rodent differ from that of an average human, these findings are
generally supported by human research (Gianaros et al., 2007;
Lupien et al., 2007; Ganzel et al., 2008; Prince and Abel, 2013).
The prefrontal cortex is vulnerable to both acute and chronic
stressors, with acute stress producing notable impairments in
spatial working memory (Arnsten, 2009), as well as reducing
the capacity to problem-solve and think flexibly. Paralleling
the effects seen in the hippocampus, long-term exposure to
stressors produces lower prefrontal cortex volumes (Cerqueira
et al., 2007), reduced dendrite length and branching (Holmes and
Wellman, 2009), and detriments to spatial memory (Cerqueira
et al., 2007; Arnsten, 2009), vulnerabilities that appear to worsen
with aging (McEwen and Morrison, 2013). Cave environments
offer challenging three-dimensional environments in which
to move and explore, simulating the challenging perceptual
and mission conditions of spaceflight; they may also offer
unique opportunities to contribute to knowledge of hippocampal
function, dysfunction, and plasticity as it relates to sleep, stress,
and confinement.

The perceived risk and danger aspect of expedition
environments offers another set of research opportunities
with spaceflight relevance. Communication with the outside
world may be very limited. Though teams often set up a
telephone line between an external base and a main cave base
camp for extended expeditions, difficult terrain may still require
hours or even days of movement before communication can
be established, and rescue attempts could take much longer. In
future long-duration space missions to Mars and for permanent
stays on the Martian surface, transmissions between ground and
space may be delayed up to 40min or even blocked, and short-
term rescue may be impossible; lack of a visual link to Earth
will add to the feelings of isolation and autonomy (Horneck
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and Comet, 2006; Strapazzon et al., 2014). Under uncertain
conditions, stress impacts decision-making and risk-taking
behavior (reviewed in Morgado et al., 2015). These effects appear
to be mediated by stress-related release of neurotransmitters
that lead to alterations in neural firing, and if stress is chronic,
to architectural changes in frontal lobe areas involved in
higher-level cognition (Arnsten, 2015). The stress associated
with risk and danger also affects interpersonal interactions
and group dynamics, potentially leading to feedback cycles in
communication that foment crew conflict (Kalish et al., 2015).

Interpersonal Interactions and Teamwork
The interaction of stressors that challenge cave and space
explorers with interpersonal dynamics is a critical component
of mission success (Bishop et al., 1999; Sandal, 2018). Although
teamwork, team cohesion, team effectiveness, and resilience have
been identified as knowledge gaps and are current topics of
investigation for space exploration, there have been relatively
few studies in extreme environments and space-analogs (for a
summary, see Salas et al., 2015; Sandal, 2018), and studies within
caves are scarce (for examples, see Bishop et al., 1999; MacNeil
and Brcic, 2017).

The empirical study of team characteristics and processes has
non-standard, evolving theoretical constructs and methodology
(Cronin et al., 2011; Alliger et al., 2015; Kozlowski, 2015).
Common techniques include behavioral observation (during
simulations or training; in person, or by reviewing recordings)
and self-report by surveys (during pauses in activity, or
retroactively) (Brannick et al., 1997). These methods may require
an uninvolved observer, rely on team members’ ability and
desire for introspection, and may not capture how the team
dynamically reacts and interacts to changing situations.Wearable
physiological and neurophysiological measurement devices have
been proposed as a means of unobtrusively tracking team
dynamics, assessing the quality of teams’ performance in real
time, and adaptively rearranging team or task components
(Stevens et al., 2011; Salas et al., 2015; Santoro et al., 2015;
Lederman et al., 2017). These promising approaches are in early
development phases, and could be tested in cave environments.

Evaluating Interfaces and
Countermeasures
As well as observing and characterizing the behavioral and
neurophysiological correlates of environmental stressors (Alonso
et al., 2015), (neuro) physiological indices of attention, workload,
and emotional state can be used to measure how people interact
with technology, for the purposes of evaluating equipment
interfaces (Liapis et al., 2015) and to validate brain-computer
interface (BCI) systems. Passive BCIs use these signals to adapt
the behavior and functionality of highly complex and safety
critical systems accordingly to the user’s actual mental state
in real time, without requiring effort. They are promising
means of optimizing interaction with technology for spaceflight
applications as well as in various Earth-based applications
(Coffey et al., 2010; Aricò et al., 2016; Arico et al., 2017). In cave
exploration, interaction and supervision of swarms of robotic

agents is a possible application (Fink et al., 2015; Kolling et al.,
2016).

The cave environment could be used to test the feasibility
and effectiveness of countermeasures. In a recent meta-analysis,
mindfulness-based meditation was shown to reduce stress,
depression, anxiety and distress, and improve quality of life
in healthy individuals (Khoury et al., 2015). Neurofeedback,
in which users are given a visual or auditory representation
of certain features of their brain’s ongoing activity such that
they can learn to modulate it (e.g., based on the amplitude
of different frequency bands measured with EEG), might be
tested as a means of maintaining function during expeditions.
In a review of about 30 controlled studies, EEG-neurofeedback
showed evidence of performance gains on sustained attention,
orienting and executive attention, memory, spatial rotation,
reaction time, complex psychomotor skills, implicit procedural
memory, recognition memory, perceptual binding, intelligence,
mood and well-being (Gruzelier, 2014).

Slow oscillations present in deep sleep can be enhanced using
a method known as auditory closed-loop stimulation. Short
bursts of quiet broadband noise are played to the user, precisely
timed to the ascending phase of ongoing slow oscillations (Ngo
et al., 2013). The brain’s reaction to the sounds strengthens
the slow oscillations and improves some types of memory (i.e.,
hippocampus-dependent declarative memory; Arnal et al., 2017;
Besedovsky et al., 2017). Another new method of enhancing
learning is known as targeted memory reactivation (TMR), in
which an olfactory or auditory stimulus is associated with a
learning event. In the subsequent sleep period, the stimulus is
repeated, presumably reactivating the memory and increasing
the strength with which it is consolidated (learned) (Schouten
et al., 2017). Although these methods are new and have
shown improvements on only basic tasks that are far removed
from those performed in the operational environment, further
developments may make them usable to optimize learning in
expedition environments; these could be tested in caves.

Thus, as early twentieth century researchers deduced, cave
environments are useful for studying sleep and circadian
processes. Though early studies only took advantage of the
isolation and the absence of zeitgebers found in caves, a much
larger set of questions can be asked during modern expeditions:
of sleep and circadian rhythm, but also about sensation and
perception, spatial navigation, interpersonal interactions and
teamwork, human factors design, stress, and the impact of these
stressors on wellbeing and performance. In the following section,
we discuss several considerations for conducting human research
in cave environments.

METHODOLOGICAL CONSIDERATIONS
FOR CONDUCTING RESEARCH IN CAVES

Because of the long planning time for many space and analog
missions and because of the difference in the scale of research
investment, the pace of progress is generally more rapid in
mainstream neuroscience. The focus of analog research is
likely to be establishing and characterizing phenomena under
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expedition conditions and assessing the effect of interventions,
whereas a laboratory approach can investigate finer-grained
mechanisms, in tightly controlled paradigms that isolate specific
phenomena, possibly using highly specialized equipment. Both
are valuable; to maximize the advantages of each, researchers
might choose to include a lab-based control group for
comparison, test subjects before an expedition in the lab to serve
as a baseline, complement field studies with investigations of the
same phenomenon using their full lab suite, or carefully validate
field equipment and procedures against laboratory standards,
according to the research question.

Scientists only familiar with the traditional academic research
sidemay find the collection Space Safety andHuman Performance
Sgobba et al. (2018), as well as Clément and Ngo-Anh (2013) to
be useful starting points to review studies conducted in space or
space analogs to date. It can be helpful to obtain first- or second-
hand knowledge of the cave expedition environment prior to
planning experiments, such that environmental and mission
constraints that could introduce problems, confounds, or poor
quality data can be avoided. In field studies, in fact, we often have
poor control over confounding environmental factors (Brugger
et al., 2018), but choosing the right “cave setting” can offer a
certain level of standardization.

Expedition or medical experts who might wish to add
neuroscience questions to their programs may discover too late
that their results are unpublishable. For example, in auditory
cognitive neuroscience, it is considered essential to confirm that
subjects have normal hearing thresholds such that experimental
findings can be attributed to some condition of interest and
not a hearing deficit. Norms and best practices such as this
have evolved in each specialized sub-field in order to guard
against artifacts and confounds, and ensure replicability and
generalizability of findings, but may not be obvious to operations
personnel. There are oftenmeans of satisfying such requirements,
once they are known. In this example, the researcher could
conduct a basic audiogram on-site or arrange (with the subject’s
permission) to obtain equivalent information via previous
medical reports. A more problematic issue concerns sample
size and statistical validity of the proposed research design; (i)
case studies or very small sample sizes are unlikely to be well
regarded by many peers in neuroscience; (ii) small sample sizes
(∼n < 30) can show only large differences and many aspects
may remain hidden due to the low power (type II error or
high false negative rate). Possible solutions include collecting
more extensive data on a few more homogeneous sample
subjects, using different converging methods of neuroimaging
and behavioral testing, pooling data over several missions
(documenting differences between the missions that might
affect results), or contrasting results with a laboratory-base
group.

Researchers may run into differences in expectations for
scientific communication when crossing field boundaries.
Most space and analog human research work is currently
presented in space or applied physiology-themed journals
and conferences (with some exceptions of recent publications
in generalist journals, e.g., Basner et al., 2013; Antoni
et al., 2017). People working on related issues from the

expedition and laboratory sides are therefore unlikely to
be present at the same meetings or to read the same
reports. Publishing in generalist journals may help to increase
communication between space and mainstream neuroscience.
Both specialized scientific knowledge and expedition expertise
is needed to successfully take advantage of this unique
situation while ensuring the value of results to the different
communities.

TOOLS AND EQUIPMENT FOR
EXPEDITION COGNITION

High quality, lightweight, relatively inexpensive devices to
measure (and even influence) brain activity are becoming
available, as are inexpensive laptops and tablets that can be
used to measure a variety of important aspects of cognition and
behavior. In psychology and neuroscience (as in other fields),
there is a movement toward “open science,” in which research,
data, and tools are made freely available. These developments
will make much more extensive expedition cognition research
possible.

The determining factors for planning subterranean studies
are the specific characteristics of the cave and mission (i.e., cave
conditions, duration, group demographics, planned activities,
logistic restrictions), and the part of the expedition during which
measurements need to take place (illustrated in Figure 2). Factors
other than cave andmission itself should also be considered when
selecting a research situation, such as the presence of external
scientific, logistical, and medical resources, and presence of an
organized rescue organization. Of the mission phases, pre-post
expedition periods are the least constrained, as data could be
measured external to the cave in a portable lab or nearby research
facility. In-cave equipment is transported in water-resistant bags
on shoulders, pushed and dragged through constricted areas,
and raised or lowered on ropes. It must be small, light, and
protected against high humidity, submersion in water in some
caves/passages, dust, mud, and shock due to handling (illustrated
in Figure 3). Power consumption may be a limiting factor of
equipment, especially for longer missions; electronics should be
as small and energy-efficient as possible. Pencils and moisture-
resistant paper for simple measures like surveys might be more
appropriate than electronic solutions when power is a constraint,
although even water-resistant paper is easily soaked and soiled,
and pencils, lost. Measurements taken in the cave at the end of
the day at a base camp or during the rest period for sleep studies
could allow for relatively larger or more delicate equipment or
equipment that requires some setup to be used, like laptops and
EEG.

Researchers should keep in mind that their experiments will
be secondary to expeditioners’ other goals; time-consuming or
irritating procedures, unclear instructions, and measurement
equipment failures requiring troubleshooting may reduce
compliance and decrease data quality or increase dropout to a
greater extent than in the laboratory. For extended expeditions,
thought should be given as to how to maintain comfort and good
signal quality despite limited opportunities for personal hygiene.
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FIGURE 2 | Expedition phases determine the nature of possible measurements. (A) Pre- and post-mission, testing can include delicate equipment and can be

conducted in comfort. (B) During exploration, minimal portable equipment can be worn continually or used during brief stops (i.e., during photography, mapping, and

rest stops); simplicity of use and robustness are key. (C) Where base-camps are established, more elaborate testing with laptops and electrophysiology can be

conducted, as well as for sleep recordings during rest periods (D). Permission has been obtained from the individuals for the publication of these images. Photo

credits, ESA archives, used with permission from photographers; (A), Alessio Romeo; (B), left: Alessio Romeo, right: Natalino Russo; (C), Vittorio Crobu; (D) Riccardo

DeLuca.

The main tools currently available for human neuroscience in
caves, ordered by increasing degree of complexity are discussed
in the following subsections.

Surveys and Questionnaires
Surveys and questionnaires are common research tools,
particularly toward the psychological end of the psychology-
neuroscience spectrum where they are used to answer questions
about subjective experience, obtain reports of habits or schedules,
or document interpersonal interactions. When cognitive or
neurophysiological measures are the main tools, surveys and
questionnaires can also be useful to gather information about
health and demographic variables (e.g., to rule out neurological
disorders or to document the subject’s age and gender), and
about potential confounds that may be necessary to interpret
the data correctly. Methods to develop effective surveys and
questionnaires are described in Yorubaland et al. (1999) and
Fink (2003). A variety of prepared and validated surveys and
questionnaires are available, many of which can be obtained
free of charge and have been validated. Existing measures may
already have been linked to other neurophysiological data,
allowing for some further insight and inference; for example,
daily ratings of positive mood have been linked to serotonergic
function in the central nervous system (Flory et al., 2004).

However, scales are often developed for clinical or diagnostic
use and might not be sensitive to minor variations between
healthy, high functioning adults, or a scale may be intended to
give a global general score such as propensity toward daytime
sleepiness rather than measure daily fluctuations. Some tools are
lengthy or require a trained interviewer to administer, which
would not be appropriate in an expedition setting. A further
consideration is the questionnaire load of the participants and
the conditions under which the participant will complete the
survey (e.g., physical comfort, lighting), which can affect data
quality. Nonetheless, surveys and scales can be useful to quickly
and inexpensively collect useful data, and require no equipment
other than pen and (water-resistant) paper, or they can be
computerized or answers can be recorded by voice according to
mission constraints.

We list some common questionnaire-based tools in Table 5

which fall into several topic categories. The unusual sensory
conditions and need for alertness due to risks required in
expedition environments can contribute to fatigue. Alertness,
sleepiness, and fatigue levels are interrelated but distinct
phenomena that can be measured with questionnaires, in
addition to physiological measures such as pupillometry
(described below). Situational awareness is the perception
and understanding of the environment and events, and is
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FIGURE 3 | Experimental and equipment considerations. (A) Equipment must be small, lightweight, well-organized, and packed to protect it against damage

according to the nature of the cave and expedition. (B) Equipment worn during movement must be positioned so as not to pose safety risks (e.g., no obstruction of

view or dangling wires), not to be dislodged or damaged by climbing harnesses and activities, and so as to be protected from impact and water damage. (C)

Consideration must be given to the conditions under which measures are administered; compliance and data quality may be affected by participant comfort.

Permission has been obtained from the individuals for the publication of these images. Photo credits, ESA archives, used with permission from photographers; (A),

left: Loredana Bessone, right: Vittorio Crobu; (B), Natalino Russo; (C), Natalino Russo.

particularly relevant to operational tasks. Stress is a state of
mental or emotional strain or tension resulting from adverse
or demanding circumstances; space flight and cave expeditions
both pose stressors on team members. Prolonged missions in
isolation and under stressful conditions can affect the mood
and therefore the capacity for mission members to perform
to the best of their abilities (Liu et al., 2016). Positive team
dynamics and social interactions are highly desirable in long-
term missions, during the taxing conditions of space-flight, and
the longest cave expeditions, which can be weeks long. Pre-
mission questionnaires that examine social compatibility have
been used to improve group interactions in isolation experiments
(Dunlap, 1965; Chidester et al., 1991). These questionnaires can
be useful in crew selection (see Kanas et al., 2013).

Computerized Cognitive Testing
Cognitive performance of astronauts is essential for maintaining
the capacity to problem solve in new situations and respond
quickly in times of equipment malfunction or injury
during missions. Computerized cognitive tests are based on
neurophysiological measures rather than self-report, and
therefore provide more objective information. In this section, we
list some of the main cognitive tasks used or potentially relevant
for use in space and space analogs, with particular attention
to testing visuo-spatial navigation skills—a relatively new area

that is relevant in caves and spaceflight and lends itself well to
computerized testing. Questionnaires and ratings can also be
adapted for use on a digital device such as a tablet or phone (e.g.,
Betella and Verschure, 2016), which may be logistically simpler
than paper-based methods where they are needed in conjunction
with planned computerized testing.

Reaction time and response accuracy are frequently collected
in spaceflight-related cognitive testing since these measures
examine crew members’ abilities to react well in critical
situations, and show different sensitivities to spaceflight
conditions. A study on the mental performance during short
term and long term space flight showed that reaction time and
spatial memory were not decreased during space flight but
visuo-motor tracking and dual-task capabilities were decreased
(Manzey and Lorenz, 1998). Other studies looking at the single-
task reaction time, visuo-motor tracking, and dual-task abilities
of astronauts before and during their experience at the ISS show
that all three are impaired during spaceflight (Bock et al., 2010).
It has been suggested that the changes on visuo-motor tracking
are a result of the microgravity effects on sensorimotor processes
during spaceflight (Bock et al., 1992) and that the deficits in
single- and dual-task reaction time are a result of stress and
fatigue of the mission (Santy et al., 1988).

The Psychomotor Vigilance Test (PVT) measures how quickly
the participant can respond to a visual stimulus. This test has
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FIGURE 4 | Computerized tests of visuo-spatial orientation skills. (A) A sample trial of the Spatial Configuration Task. In each trial, participants make use of landmarks

in a scene to infer their location in a simple environment populated with five geometric objects. The environment (and objects’ locations) remains stable throughout the

test, and participants are required to build a mental representation of the locations of objects throughout the test. (B) A sample image of the response phase of the

Path Integration Test. In this task, participants view two automatic first-person displacements, and must indicate the direction and distance to return to the starting

point of the trial. (C) A sample trial of the Mental Rotation Test in which participants are required to mentally manipulate the objects to decide whether or not they are

the same. (D) A depiction of the response phase of the Four Mountains Task. In each trial of this task, participants indicate the option which shares the same

topography with the stimuli encoded immediately prior (not displayed).

been used on the ISS tomeasure behavioral and cognitive changes
in astronauts’ attention states, alertness, problem-solving skills,
and impulsivity, and during the Mars500 mission (subjects were
shown to have high levels of psychomotor vigilance performance
throughout the mission Basner et al., 2014b).

The Stroop Test is a computerized test that can assess the
attentional control of a subject by asking them to suppress
irrelevant information (Stroop, 1992). A version of this test
asks the subject to answer with the color of the word they are
looking at and not the color that is the word actually reads. One
study looked at 3 crew members during their 11 day spaceflight
and found that their ability to suppress irrelevant information
decreased as compared to before the mission (Pattyn et al., 2009).

Working memory is the ability to temporarily store and
manipulate the information required to carry out complex
cognitive tasks such as learning, reasoning, and comprehension.
Both visual working memory (such as that required to store
layout of a spacecraft or cave environment) and verbal working
memory are important to evaluate (reviewed in Wilhelm et al.,
2013). The Sternberg memory task asks the subject to memorize

a list of words or numbers and recall whether a subsequently
presented probe item had been present in the original set.
Response time is measured. Several studies using this task have
shown slower responses during spaceflight (Manzey et al., 1998;
Kelly et al., 2005) but others have not found significant differences
(Manzey et al., 1993; Newman and Lathan, 1999).

A new computerized cognitive testing battery by the name
of “Cognition” has been developed specifically for astronauts
(Basner et al., 2015) with the goal of facilitating comparison of
cognitive function across analogs and spaceflight. This test covers
testing on spatial orientation, emotion processing, and risk taking
all encompassed in 10 neuropsychological tests. The Spaceflight
Cognitive Assessment Tool for Windows (WinSCAT) is commonly
administered to astronauts on the ISS and in spaceflight
simulations (De la Torre et al., 2014), and comprises subtests
measuring mathematical skills, short-term memory, working
memory, attention, and spatial processing (Kane et al., 2005).
A study that compared Cognition and WinSCAT showed that
Cognition scores assess a variety of neurocognitive disciplines
while the WinSCAT weights heavily on executive control (Moore
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TABLE 5 | Questionnaire-based tools.

Topic area Questionnaire Description Application in space medicine or

related examples

Notes about perspectives

in cave analogs

Alertness,

sleepiness, and

fatigue

Stanford Sleepiness Scale

(Hoddes et al., 1973)

A self-reported 7 point scale

which assesses how

fatigued or low-functioning

an individual may feel on a

daily basis

Used to study sleep efficiency in

relation to neurobehavioural

performance for space operations

(Mollicone et al., 2008) and in the

Mars expedition analog experiment at

the Mars Desert Research Station in

Utah (Groemer et al., 2010)

Useful for long cave

expedition (>3 days) to

observe interactions with

sleep and circadian rhythm

factors, expedition activities,

interpersonal interactions,

and teamwork

Alertness,

sleepiness, and

fatigue

The ZOGIM-A Alertness

Questionnaire (Shahid et al.,

2011)

A 10 item scale that

examines subjects’ daily

energy levels (taking into

account caffeine

consumption and exercise

levels) and quantifies the

amount of alert-demanding

tasks performed over the

course of that day

Proven to be reliable in measuring

alertness levels (Moller et al., 2006;

Shapiro et al., 2006)

As above

Alertness,

sleepiness, and

fatigue

Toronto Hospital Alertness

Test (Shapiro et al., 2006)

A retrospective

questionnaire that assesses

the subjects’ perception of

their alertness levels, daily

Proven to be reliable in measuring

alertness levels (Moller et al., 2006;

Shapiro et al., 2006)

As above

Situational

awareness

Situational Awareness

Rating Technique (SART)

(Taylor, 1990)

Implemented after another

task and asks the subject to

rate their own awareness

and performance on a

7-point scale

Designed for aircrew systems testing

and human factors studies

Could be used after various

mission-related activities

Situational

awareness

The Situation Awareness

Global Assessment

Technique (SAGAT)

(Endsley, 1995)

Implemented by randomly

freezing an operational

simulated situation so that

subjects can immediately

answer questions about

performance and

awareness

Used on astronauts operating a

planetary rover (Fong et al., 2014)

Could be integrated with

computerized cognitive

testing, or non-safety-critical

operational tasks

Stress The Perceived Stress Scale

(PSS) (Cohen et al., 1983)

A widely used general

questionnaire designed to

measure the degree to

which situations in one’s life

are appraised as stressful

Used in cognitive neuroscience for

between-group control purposes

(e.g., Maguire et al., 2006)

Appropriate for long-term

evaluation, for example to

establish level of perceived

stress upon study entry

between individuals or to

establish equivalency of

stress levels between

groups

Mood and emotion The Beck Depression

Inventory (Beck et al., 1961)

A 21-item questionnaire

used to assess the intensity

of depression by asking the

subject to rate articles such

as pessimism, crying,

agitation, or loss of interest,

on a 4-point scale - either

on a daily, weekly, or

monthly basis

Used in prolonged isolation studies

such as the Mars520 study (Basner

et al., 2014b)

Appropriate for long-term

evaluation, for example to

track levels of depression

before, during, and after

extended cave

permanences

Mood and emotion Positive and Negative Affect

Schedule (PANAS) (Watson

et al., 1988)

A pair of 10-item self-report

scales evaluating the extent

individuals experience

particular feelings or

emotions, as rated on a

5-point scale

Used to study crew members on a 2

week mission at the Mars Desert

Research Station (Sawyer et al.,

2012), and during the Mars105 space

simulation (Nicolas et al., 2013)

As above

Mood and emotion The UWIST Mood Adjective

checklist (UMACL)

(Matthews et al., 1990)

Subjects judge the

magnitude of the moods

they experience weekly on a

5 point scale

Used in the Mars520 space

simulation to study the psychological

adaptations of crew members

(Polackova Solcova et al., 2014)

Can be administered before

another task to assess

interactions of mood and

performance

(Continued)
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TABLE 5 | Continued

Topic area Questionnaire Description Application in space medicine or

related examples

Notes about perspectives

in cave analogs

Mood and emotion Profile of Mood States

(POMS) questionnaire

(McNair et al., 1971)

Subjects rate 65 items

within 7 mood domains

(anger-hostility, vigor-activity,

confusion-bewilderment,

depression-dejection,

tension-anxiety, and

friendliness) on a 5 point

scale

Used to study ISS astronauts’ moods

over time and their relation to scores

of fatigue, anger, hostility and

depression (Kanas and Manzey,

2008)

Appropriate for long-term

evaluation, for example to

track mood states during,

and after extended cave

permanences; the

fatigue-inertia scale may be

particularly relevant for sleep

Mood and emotion Core Self-Evaluations Scale

(CSES) (Judge and Erez,

2003)

Subjects indicate their

agreement with 12

statements (e.g., “I

complete tasks

successfully”) on a 5-point

scale. Used to rate

individuals’ overall

self-worth and capability, as

well as four dimensions (i.e.,

locus of control, generalized

self-efficacy, self-esteem,

and emotional stability)

Used widely to study job satisfaction

and job performance

Appropriate for pre-mission

testing, to compare

individuals and groups,

potentially interesting to

study how individual

differences relate to

performance under

extended mission conditions

Mood and emotion New General Self-Efficacy

scale (NGSE) (Chen et al.,

2001)

An 8-item scale that

measures subjects’ general

belief that they have the

capacity to complete a task

successfully, using a 5-point

scale

Used widely in studies of team

efficiency, and performance

As above

Mood and emotion The trait of emotional

stability can be assessed

using the 60-item

neuroticism scale from the

International Personality

Item Pool (Goldberg, 1999)

Scale items require

individuals to rate the

accuracy of a statement

about them (e.g. “Am often

in a bad mood”), on a

5-point Likert scale

Used widely in studies of team

interactions, leadership, and

performance

As above

Teamwork and

social dynamics

System for Multiple Level

Observation of Groups

(SYMLOG) (Keyton and

Wall, 1989)

An interpersonal rating

method for analyzing

interaction among group

participants. Subjects rate

the frequency with with 26

behaviors occur in relation

to other group members, on

a 3-point scale.

Proven sensitive to decreased crew

cohesion that lead to social isolation

of several crew members in the ESA

isolation study ISEMSI (Isolation

Study for European Manned Space

Infrastructures), and in the MIR space

station simulation (Sandal et al.,

1995; Sandal, 2001)

Appropriate for periodic

evaluation of group

interactions and

group-support team

interactions pre, post and

during missions. Could be

used to study means of

anticipating and mitigating

behavioral problems within

teams during expeditions.

Teamwork and

social dynamics

Subscales of the Group

Environment Scale and the

Work Environment Scale

(Moos, 2002; Moos and

Insel, 2008)

These scales ask subjects

to rate items such as leader

support, task orientation,

managerial control, and

work pressure, on a periodic

basis (e.g., weekly)

Used on the ISS (Kanas and Manzey,

2008)

As above

et al., 2017). For further discussion of the measurement of
working memory, attentional control, and other cognitive testing
of subjects in spaceflight environments (see Strangman et al.,
2014; Kanki, 2018a,b).

Visuo-spatial orientation skills can be tested in a variety
of ways that subdivide different elements of this complex
phenomemon. Here, however, we highlight four tests and
a questionnaire that we believe provide a comprehensive
assessment of visuo-spatial orientation skills in humans. The
Spatial Configuration Test measures the subjects’ ability to

create a mental representation of the environment, which is
a critical process for orienting and navigating effectively in
one’s surroundings (Burles et al., 2017). In this test, participants
view scenes from a space-like virtual environment populated
with five simple, geometric objects (Figure 4A). Participants
learn the positions of the objects through 60 successive trials,
which are constituted by a series of first-person displacements
from one object to another. At each trial, participants indicate
the unseen object they are located upon. Participants’ accuracy
and reaction times are recorded. The Path Integration Test is
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used to estimate a subject’s ability to convert visual optic flow
information into a spatial representation of distances traveled
in the environment (McNaughton et al., 2006). In each trial
of this test, participants are presented with two displacements
from within a simple environment devoid of any landmarks
(Figure 4B). At the end of the two displacements, participants
are asked to indicate the distance and direction to the point
from which the first displacement took place (i.e., original
starting point). Participants’ angular and magnitude errors at
each trial are recorded. The Mental Rotation Test characterizes
a subject’s ability to mentally manipulate 3-D objects in space,
which is critical for the mental rotation component of spatial
orientation and navigation (Kozhevnikov et al., 2006). In this test,
participants view pairs of objects constructed from 10 cubes each
(Figure 4C). At each of the 80 trials, participants indicate if the
two objects are the same, or if they are mirror images of one
another. Participants’ accuracy and reaction times are recorded.
The Four Mountains Test evaluates the ability to mentally
manipulate viewpoints and recognize locations from different
perspectives (Hartley et al., 2007; Hartley and Harlow, 2012). In
each trial of this test, participants view a virtual scene composed
of four distinct mountain peaks. After each scene, participants
are required to identify the same scene, depicted from a different
viewpoint, from four response options (Figure 4D). Participants’
accuracy and reaction times are recorded.

The Santa Barbara Sense of Direction Scale (SBSOD) captures a
more ecologically valid measurement of spatial orientation skills
(Hegarty et al., 2002), but is still related to the aforementioned,
more focused, measures of spatial abilities, and importantly, the
capacity to generate mental representations of the environment
(Burles, 2014). The scale consists of items evaluating an
individual’s subjective rating of his/her spatial orientation and
navigational skills as experienced in daily life, via agreement on
a 7-point scale with statements such as “I can usually remember
a new route after I have traveled it only once.”

Eye Tracking and Pupillometry
Eye trackers and pupillometry tools provide non-invasive and
rich indices of brain function and cognition. Gaze analysis
reveals attentional focus and cognition strategies (Eckstein et al.,
2017), and pupil dilation reflects mental effort (Granholm et al.,
1996). Previous work has used portable eye trackers by attaching
video cameras onto helmets or eyeglass frames, allowing for
eye movement to be recorded, modeled, and stored. To our
knowledge, eye trackers have not yet been brought into cave
environments (and would likely not be practical for use during
exploration activities) but they have been used in a virtual cave
environment (Koles and Hercegfi, 2015), and could be used to
collect data pre-mission or at a base camp. Eye tracking devices
have been used in parabolic flight to study visual function in
microgravity (Clarke and Haslwanter, 2007). For a more detailed
look on eye movements and their relation to space physiology,
see the following review: (Clément and Ngo-Anh, 2013).

Actigraphy
An actigraph is a device that can monitor movement, usually via
wrist-worn accelerometers that record movements over periods

of days. Some inexpensive options include those that are available
commercially to consumers to track energy expenditure for
fitness purposes, which have already have been used in a few
studies, for example looking at physiological factors related to
human performance during hiking (Divis et al., 2018). Wrist
actigraphs can also provide basic information about sleep-wake
cycles, and have been used in studies on sleep deprivation and
sleep patterns of astronauts during spaceflight (Barger et al.,
2014), and to evaluate sleep-wake circadian rhythmmaintainance
during Mars500 (Frey, 2013).

Skin Conductance Response (SCR) and
Heart Rate Variability (HRV)
The skin conductance response (SCR) (or “galvanic skin
response”) is a non-invasive measure that can examine
autonomic nervous system responses such as those related
to stress, emotional engagement, psychological arousal, and
anticipation of decision-making outcomes. SCR is measured by
placing two electrodes in contact with the skin and passing a tiny
electrical charge between them; changes in electrical conductivity
of the skin caused by sweat gland function are then observable
(see Christopoulos et al., 2016 for a primer on SCR methods).
SCR is most easily and reliably measured on the palms of the
hands or soles of the feet, where the density of sweat glands that
are most responsive to psychological reactions are found. Despite
the development of lightweight, wearable sensors, humid cave
environments and physical activity often involving the hands
limit the practicality of in-cave measurement. However, other
metrics such as heart rate variability (HRV; i.e., variability in
heartbeat interval) can also serve as indicators for autonomic
nerve responses. In a recent meta-analysis, Thayer and colleagues
proposed that HRV can serve as a proxy for the integration
of brain mechanisms that guide flexible behavioral control with
peripheral physiology, and which can be useful for understanding
stress and health (Thayer et al., 2012). HRV can be measured by
electrocardiogram (ECG), which is based on recording electrical
activity of the heart, or by pulse oximetry, which measures
changes in reflected or transmitted light due to pulsing arterial
blood. Several companies are now producing portable devices
containing accelerometers, thermometers, ECG, and oximeters
that can be worn attached to the body or embedded in clothing
(see Hey et al., 2014 for a review of recent developments in
ambulatory measurement, Antoni et al., 2017; Pinna et al., 2017
for examples of in-cave use, and Vigo et al., 2012, 2013 for
reports of HRV measurements during the Mars500 project, in
which evidence for autonomic changes during confinement were
reported).

Portable Electroencephalography (EEG)
Electoencephalography involves non-invasively recording the
electrical activity of the brain via electrodes placed on the scalp
that are used to record a time series of voltage fluctuations. From
EEG, researchers can learn about the strength and variability of
the brain’s activity within different frequency bands and across
the scalp while the subject performs a task, in reaction to a
stimulus, or as they rest and sleep. A variety of markers have been
found for example to track workload (Coffey et al., 2012; Roy
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et al., 2016), drowsiness (Sahayadhas et al., 2012), and vigilance
(Kamzanova et al., 2014), and have been used to study the effects
of interventions such as exercise on de-conditioning during
confinement (Schneider et al., 2010). It has also been used for
neurofeedback, in which users learn to self-regulate brain activity
(see Enriquez-Geppert et al., 2017 for a review and tutorial).

EEG has been used in caves since the 1970s (Table 4), but it
was kept in an easily accessed cavern that the subject stayed in for
the duration of the expedition, a situation that does not represent
many contemporary exploration expeditions. Research grade
EEG systems today are of higher complexity, and are still typically
bulky, delicate, costly, and require special setup steps with messy
electro-conductive gel. EEG equipment does exist aboard the
ISS (Columbus module, launched in 2008) but does not appear
to have been used extensively (De La Torre et al., 2012), for
which usability issues (i.e., setup, non-wirelessness) may have
been a factor (see also Clément and Ngo-Anh, 2013). Portable
EEG equipment has recently been developed for specialized uses
such as video gaming and in clinical diagnosis that have fewer
electrodes, easier application (i.e., dry electrodes), lightweight
amplifiers, and battery packs. Consumer products are more
variable in quality, but as they are far less expensive and may
be less susceptible to damage, and so are most suitable for
expedition environments; some have been validated against lab-
grade equipment on indexing neural correlates of cognition (i.e.,
Wang et al., 2015; Krigolson et al., 2017). New miniaturized “ear-
EEG” devices that can record a subset of EEG metrics via an
electrode integrated into an earplug are currently under study;
once available they would further increase potential cave, analog,
and spaceflight applications (Mikkelsen et al., 2015).

Portable Polysomnography (PSG)
Polysomnography consists of EEG with additional sensors
for physiological information that are necessary to answer
research questions about the quality and architecture of
sleep (as opposed to only its timing and length, for which
actigraphy is sufficient). In addition to at least once channel
of EEG, PSG includes electrooculography (EOG; to detect
eye movements), electromyography (EMG; to detect muscle
movements and tension), and electrocardiography (ECG or an
oxygen saturation sensor) to monitor heart rate. EEG systems
are often developed only with waking/cognitive testing or with
sleep recordings in mind, though some equipment can be
used for both purposes, making possible study designs that
involve some active cognitive testing before or after sleep,
or for equipment sharing across experiments. In recognition
that traditional PSG requires considerable expert assistance
both to apply and to analyze and negatively affects the sleep
of the person under observation (which is problematic for
safety reasons in expedition environments), techniques such
as ear-EEG (see above) in combination with automatic sleep
analysis algorithms are being tested (Mikkelsen et al., 2017).
Relatively inexpensive PSG headbands that are able to play
the user EEG phase-locked sounds to restore fragmented
sleep and improve improve memory (i.e., closed-loop auditory
stimulation) have recently been validated (Arnal et al., 2017;
Debellemaniere et al., 2018); these devices could be used

both to record sleep data and to test the applicability of
the close-loop auditory stimulation technique in expedition
conditions.

Functional Near Infrared Spectroscopy
(fNIRS)
Functional near Infrared Spectroscopy (fNIS) is a technique that
is able to image correlates of brain activity based on changes in
the absorption of infrared light by hemoglobin as its oxygenation
state changes (reviewed in Ferrari and Quaresima, 2012). In
contrast to EEG, which provides high temporal resolution about
the activity of synchronized populations of neurons, fNIRs offers
access to the cortical hemodynamics that have been extensively
studied using fMRI. fNIRS is less sensitive to motion artifacts
than either EEG or fMRI, and is somewhat portable and much
less expensive than fMRI. fNIRS has been used to study a
wide range of cognitive functions such as working memory,
and recent developments in portability and wirelessness have
extended fNIRS experiments outside of the lab (Pinti et al., 2015).
The equipment and usability of fNIRS is likely not yet sufficiently
developed for cave expedition use, though this area is under
active development and suitable devices may become available in
the near future (e.g., Klakegg et al., 2016).

CONNECTION TO IN-FIELD STUDY
EXPERTS AND CAVE COMMUNITY

Unless the researcher is adept at planning their own cave
expeditions, close collaboration with researchers having field
study expertise is necessary to obtain access to caves, to provide
detailed knowledge of the specific cave environment (and thus
minimize confounding environmental factors Brugger et al.,
2018), and to support data acquisition. Speleological groups
already involved in scientific work from other disciplines than
human studies (including geology, hydrogeology, and biology)
can help establish an appropriate underground location and a
supportive environment.

The larger and more formal caving associations (e.g.,
International Union of Speleology, National Speleological
Society of America), their publications (e.g., International
Journal of Speleology) and congresses (e.g., International
Speleological Congress, European Speleological Congress) are
also good starting points to identify suitable groups who are
motivated to support scientific work. Rescue organizations
tend to be organized at the national level, and are those
most concerned with health, communication, and even
telemedicine underground (e.g., ICAR Alpine Emergency
Medicine Commission; ICAR-MEDCOM). Among them,
medical doctors and medics are good contacts through which to
organize participation and data collection for conducting human
research.

The recreational cave community could be of interest for
recruiting enthusiastic study participants, usually for short-term
data collection in a wide range of experimental conditions.
Somewhat larger expeditions are organized by local and regional
organizations, and tend to pool together resources from
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different groups to achieve specific exploration and sometimes
scientific objectives. Their participants are more experienced,
and their duration ranges from long weekends to several
weeks. International expeditions may be funded by sponsors
or institutions and include the scientific and technical experts
needed to achieve a mix of exploration, documentation, and
scientific objectives. They provide a heterogeneous mix of people,
and complex, challenging environments (e.g., ice caves, very
deep caves, very long expeditions). Finally, rescue organizations
regularly train underground in simulated rescue interventions,
and could offer a unique opportunity for neuroscientists
particularly to study teamwork and decision-making processes
in large groups under stressful conditions, as they can engage
hundreds of personnel for several days (Schneider et al., 2016).

CONCLUSION

Research conducted on human cognition and behavioral
performance under highly challenging conditions analogous to
those found in spaceflight is needed to predict and maintain
high levels of human performance in future missions. It can also
offer scientists who primarily work in laboratory environment
unique opportunities to observe aspects of cognitive processes
as they relate to real behavior under complex, realistic,
extreme environmental conditions. In addition to contributing
to exploration activities and fundamental knowledge of human
brain function, these investigations could benefit people in safety-
critical environments and occupations, such as shift-workers,
firefighters, medical teams, or air traffic controllers.

Pushed by clinical research and consumer applications,
devices that record neurophysiological parameters with high-
fidelity non-invasively are now becoming available, making
studying a wide range of topics feasible. However, particularly
in neuroscience and related areas (i.e., cognition, cognitive
psychology, neuropsychology), gaps must first be spanned
between laboratory and field research in methods, knowledge,
and scientific culture such that the advantages of expeditions as
an intermediate research platform can be realized. An efficient
way to ensure that high-quality research is conducted in caves
and other space analogs and effectively shared is through a

mutual understanding of the expedition environment, which
we have outlined here, and through collaboration. As well as
ensuring that the results are valid and have an impact in both
space and in cognitive specializations, academic partners can
arrange for the required ethical oversight, whereas partners
familiar with expeditions can contribute essential knowledge to
make research possible and ensure it is well conducted in the
field and practically relevant. We hope that this work will support
productive collaborations that extend mainstream neuroscience
into unique environments and situations, to increase our
understanding of real-world cognition and improve human
performance and safety in operational environments. The time
is ripe for neuroscience to leave the lab.
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