1,288 research outputs found

    Solid state photomultiplier for astronomy, phase 2

    Get PDF
    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 11/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model

    Concentrations of Metals in Aquatic Invertebrates from the Ozark National Scenic Riverways, Missouri

    Get PDF
    This report summarizes the findings of a study conducted as a pilot for part of a park-wide monitoring program being developed for the Ozark National Scenic Riverways (ONSR) of southeastern Missouri. The objective was to evaluate using crayfish (Orconectes spp.) and Asian clam (Corbicula fluminea) for monitoring concentrations of metals associated with lead-zinc mining. Lead-zinc mining presently (2007) occurs near the ONSR and additional mining has been proposed. Three composite samples of each type (crayfish and Asian clam), each comprising ten animals of approximately the same size, were collected during late summer and early fall of 2005 from five sites on the Current River and Jacks Fork within the ONSR and from one site on the Eleven Point River and the Big River, which are outside the ONSR. The Big River has been contaminated by mine tailings from historical leadzinc mining. Samples were analyzed by inductively coupled plasma mass spectrometry for lead, zinc, cadmium, cobalt, and nickel concentrations. All five metals were detected in all samples; concentrations were greatest in samples of both types from the Big River, and lowest in samples from sites within the ONSR. Concentrations of zinc and cadmium typically were greater in Asian clams than in crayfish, but differences were less evident for the other metals. In addition, differences among sites were small for cobalt in Asian clams and for zinc in crayfish, indicating that these metals are internally regulated to some extent. Consequently, both sample types are recommended for monitoring. Concentrations of metals in crayfish and Asian clams were consistent with those reported by other studies and programs that sampled streams in southeast Missouri

    Concentrations of Metals in Aquatic Invertebrates from the Ozark National Scenic Riverways, Missouri

    Get PDF
    This report summarizes the findings of a study conducted as a pilot for part of a park-wide monitoring program being developed for the Ozark National Scenic Riverways (ONSR) of southeastern Missouri. The objective was to evaluate using crayfish (Orconectes spp.) and Asian clam (Corbicula fluminea) for monitoring concentrations of metals associated with lead-zinc mining. Lead-zinc mining presently (2007) occurs near the ONSR and additional mining has been proposed. Three composite samples of each type (crayfish and Asian clam), each comprising ten animals of approximately the same size, were collected during late summer and early fall of 2005 from five sites on the Current River and Jacks Fork within the ONSR and from one site on the Eleven Point River and the Big River, which are outside the ONSR. The Big River has been contaminated by mine tailings from historical leadzinc mining. Samples were analyzed by inductively coupled plasma mass spectrometry for lead, zinc, cadmium, cobalt, and nickel concentrations. All five metals were detected in all samples; concentrations were greatest in samples of both types from the Big River, and lowest in samples from sites within the ONSR. Concentrations of zinc and cadmium typically were greater in Asian clams than in crayfish, but differences were less evident for the other metals. In addition, differences among sites were small for cobalt in Asian clams and for zinc in crayfish, indicating that these metals are internally regulated to some extent. Consequently, both sample types are recommended for monitoring. Concentrations of metals in crayfish and Asian clams were consistent with those reported by other studies and programs that sampled streams in southeast Missouri

    Biomonitoring of Lead, Zinc, and Cadmium in Streams Draining Lead-Mining and Non-Mining Areas, Southeast Missouri, USA

    Get PDF
    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60- times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies

    Le secteur des télécommunications surfe-t-il de bulle en bulle ?

    Get PDF
    Le secteur des télécommunications a connu un développement rapide qui s’est accéléré à partir de la deuxième moitié des années 1990, avec l’apparition du GSM et de l’Internet. Mais la croissance réelle du secteur s’est rapidement transformée en une gigantesque bulle financière qui a été à l’origine de l’une des pires crises sectorielles qu’aient connu les économies modernes. Dans cet article, nous essayons d’identifier les facteurs qui ont conduit à une telle valorisation financière des entreprises de télécommunications ainsi que ceux qui ont conduit au retournement des marchés financiers. Enfin, à la veille de la mise en place de l’UMTS, certains éléments nous amènent à penser qu’une nouvelle bulle pourrait se former dans les années à venir. En annexes, nous simulons la rentabilité financière de l’UMTS et évaluons l’impact macroéconomique de ce projet sur les composantes de la croissance française.The telecommunication sector has recently undergone a fast development which accelerated from the second half of the 1990s, with the rise of the GSM and the Internet. But the actual growth of the sector turned into a gigantic financial bubble which was at the origin of one of the worst sector-based crises that the modern economies had seen. In this article, we try to identify the factors driving such a financial valuation of the telecommunications companies as well as those leading to the reversal of financial markets. Finally, on the verge of the implementation of the UMTS in France, some elements let us think that a new bubble might appear in the coming years. In the appendices, we simulate the financial profitability of the UMTS and estimate the macroeconomic impact of this project on the constituents of French economic growth

    Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    Full text link
    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings.Comment: Revtex, 35 pages, 13 Postscript figures included, in press with New Journal of Physics, Special Issue on The Physics of the Cytoskeleto

    Assessment of Elemental Concentrations in Streams of the New Lead Belt in Southeastern Missouri, 2002–05

    Get PDF
    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area
    corecore