

The effect of a homogenizing optic on residual stresses and shear strength of laser brazed ceramic/steel-joints

I. Südmeyer, H. Besser, M. Rohde, J. Schneider

Outline

- motivation
- material properties
- results
 - microscopic compound analysis
 - thermal characterization of laser brazing process
 - fem-analysis of residual stresses
 - x-ray measurement of residual stress
 - shear testing
 - tribological testing
- conclusion

Introduction

Motivation

Introduction

Material properties

Material Properties	AI_2O_3	PLS-SiC	Steel	Incusil-braze	Sn50 50Sn48Ag2Ti
Company	Friatec AG	ESK Ceramics	-	Morgan Chem.	KIT, IMF I
Density ρ / g/cm³	3.9-3.95	3.0	7.85	9.7	8.3
Strength σ / MPa	3501	400	560-710	338	-
Youngs modulus / GPa	380	410	210	76	68
Thermal conductivity λ, W/ml	38	145	44	166	-
Coefficient of thermal expansion α , 10 ⁻⁶ m/K	8.4	4.1	11.0	18.2	-

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

SEM-images of ceramic/AgCuTi/steel-joints

- inomogenous or no wetting of SiC mit AgCuTi- and AgCuInTi-filler despite a Ti-rich reaction zone
- homogenous, seamless wetting and explicit Ti-rich reaction layer on Al₂O₃

with AgCuTi- and AgCuInTi-filler

SEM-images of laser brazed ceramic/steel joints

- homogenous wetting of SiC with SnAgTi-filler for Sn \geq 30wt% at T \geq 900°C
- seamless wetting but inhomogenous Ti-rich reaction layer

6 26.01.2011

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Process characterization

Infrared camera: Images of temperature distribution

laser intensity laser inensity **IR-** camera $[W/m^2]$ $[W/m^2]$ distance [m] distance [m] LASER homogenizer lense Laser output beam Homogenized laser output beam >1000,0°C Gauß profile top head profile 800 T/°C T/°C 600 1000 1050 400 900 950 <230,0°C 800

temperature measurement

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Karlsruhe Institute of Technology, Institute for Materials Research I

850

FEM-calculation: Sequential temperature/stress analysis

Step 2: Calculation of expansion and stress according to temperature profile

Step 1: Calculation of temperature distribution laser heating profile

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Residual stress σ_1 in ceramic pellet

influence of element size on residual stress

influence of element size on residual stress

Residual stress σ_{1} in ceramic pellet

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Comparison residual stress FEM / X-ray measurement

11 26.01.2011

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Shear strength of laser brazed Al₂O₃/AgCuInTi/steel-joints

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Shear strength of laser brazed Al₂O₃/AgCuInTi/steel-joints

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Shear strength of laser brazed SiC/SnAgTi/steel-joints

Shear strength of laser brazed SiC/SnAgTi/steel-joints

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Tribological testing

SPIE 2011, San Francisco, USA Effect of homogenzing optic Isabelle Südmeyer

Tribological testing

conclusions

- no reproducable wetting of SiC with AgCuTi-filler
- good wetting of SiC was only achieved with SnAgTi-fillers for Sn fraction ≥ 30wt% but inhomogenous Ti-rich reaction layer
- Increase of compound strength of ceramic/steel joints with homogenizing optic
 - SiC/SnAgTi/steel-joints: from 20 MPa (m = 5) to 35 MPa (m = 12)
 - $Al_2O_3/AgCuInTi/steel-joints$: from 20 MPa (m = 5) to 42 MPa (m = 2)
- measurement of residual stress in Al₂O₃/AgCuInTi/steel-joints difficult, but possible
 - → general compliance of measured and calculated stress
- Influence of brazing layer on tribological behaviour
- Improvement of the Ti rich reaction zone necessary
- further investigations of residual stresses for improvement of joint strength

Thank you for your attention!

Deutsche Forschungsgemeinschaft

The authors thank the Deutsche Forschungsgemeinschaft for suppporting the Sonderforschungsbereich 483 "High performance sliding and friction systems on the basis of engineering ceramics".