145 research outputs found

    Congenital Forearm Pseudarthrosis, a Systematic Review for a Treatment Algorithm on a Rare Condition

    Get PDF
    Background: A congenital forearm pseudarthrosis is a rare condition and is strongly associated with neurofibromatosis type 1. Several surgical techniques are described in the literature, but the most optimal treatment strategy remains unclear. This systematic review aims to develop a treatment algorithm that may aid i

    Long-term outcomes of slipped capital femoral epiphysis treated with in situ pinning

    Get PDF
    PURPOSE: Slipped capital femoral epiphysis (SCFE) is the commonest hip disorder in adolescents. In situ pinning is commonly performed, yet lately there has been an increase in procedures with open reduction and internal fixation. These procedures, however, are technically demanding with relatively high complication rates and unknown long-term outcomes. Nevertheless, reports on long-term results of in situ fixation are not equivocal. This study evaluates the possible higher risk of worse outcome after in situ pinning of SCFE. METHODS: All patients treated for SCFE with in situ fixation between 1980 and 2002 in four different hospitals were asked to participate. Patients were divided into three groups, based on severity of the slip. Patients were invited to the outpatient clinic for physical examination and X-rays, and to fill out the questionnaires HOOS, EQ5D, and SF36. ANOVA and chi-squared tests were used to analyze differences between groups. RESULTS: Sixty-one patients with 78 slips filled out the questionnaires. Patients with severe slips had worse scores on HOOS, EQ5D, and SF36. 75 % of patients with severe slips had severe osteoarthritis, compared to 2 % of mild and 11 % of moderate slips. CONCLUSION: Hips with mild and moderate SCFE generally had good functional and radiological outcome at a mean follow-up of 18 years, and for these hips there seems to be no indication for open procedures. However, severe slips have a significantly worse outcome, and open reduction and internal fixation could therefore be considered

    NQO2 is a reactive oxygen species generating off-target for acetaminophen

    Get PDF
    [Image: see text] The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity

    Glyphosate and AMPA in human urine of HBM4EU-aligned studies: part B adults

    Get PDF
    Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 microg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 microg/L urine for Gly and between 0.21 and 0.38 microg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources

    EURL ECVAM Workshop on New Generation of Physiologically-Based Kinetic Models in Risk Assessment

    Get PDF
    The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) Strategy Document on Toxicokinetics (TK) outlines strategies to enable prediction of systemic toxicity by applying new approach methodologies (NAM). The central feature of the strategy focuses on using physiologically-based kinetic (PBK) modelling to integrate data generated by in vitro and in silico methods for absorption, distribution, metabolism, and excretion (ADME) in humans for predicting whole-body TK behaviour, for environmental chemicals, drugs, nano-materials, and mixtures. In order to facilitate acceptance and use of this new generation of PBK models, which do not rely on animal/human in vivo data in the regulatory domain, experts were invited by EURL ECVAM to (i) identify current challenges in the application of PBK modelling to support regulatory decision making; (ii) discuss challenges in constructing models with no in vivo kinetic data and opportunities for estimating parameter values using in vitro and in silico methods; (iii) present the challenges in assessing model credibility relying on non-animal data and address strengths, uncertainties and limitations in such an approach; (iv) establish a good kinetic modelling practice workflow to serve as the foundation for guidance on the generation and use of in vitro and in silico data to construct PBK models designed to support regulatory decision making. To gauge the current state of PBK applications, experts were asked upfront of the workshop to fill a short survey. In the workshop, using presentations and discussions, the experts elaborated on the importance of being transparent about the model construct, assumptions, and applications to support assessment of model credibility. The experts offered several recommendations to address commonly perceived limitations of parameterization and evaluation of PBK models developed using non-animal data and its use in risk assessment, these include: (i) develop a decision tree for model construction; (ii) set up a task force for independent model peer review; (iii) establish a scoring system for model evaluation; (iv) attract additional funding to develop accessible modelling software.; (v) improve and facilitate communication between scientists (model developers, data provider) and risk assessors/regulators; and (vi) organise specific training for end users. The experts also acknowledged the critical need for developing a guidance document on building, characterising, reporting and documenting PBK models using non-animal data. This document would also need to include guidance on interpreting the model analysis for various risk assessment purposes, such as incorporating PBK models in integrated strategy approaches and integrating them with in vitro toxicity testing and adverse outcome pathways. This proposed guidance document will promote the development of PBK models using in vitro and silico data and facilitate the regulatory acceptance of PBK models for assessing safety of chemicals

    Approaches to mixture risk assessment of PFASs in the European population based on human hazard and biomonitoring data

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) are a highly persistent, mobile, and bioaccumulative class of chemicals, of which emissions into the environment result in long-lasting contamination with high probability for causing adverse effects to human health and the environment. Within the European Biomonitoring Initiative HBM4EU, samples and data were collected in a harmonized way from human biomonitoring (HBM) studies in Europe to derive current exposure data across a geographic spread. We performed mixture risk assessments based on recent internal exposure data of PFASs in European teenagers generated in the HBM4EU Aligned Studies (dataset with N = 1957, sampling years 2014-2021). Mixture risk assessments were performed based on three hazard-based approaches: the Hazard Index (HI) approach, the sum value approach as used by the European Food Safety Authority (EFSA) and the Relative Potency Factor (RPF) approach. The HI approach resulted in the highest risk estimates, followed by the RPF approach and the sum value approach. The assessments indicate that PFAS exposure may result in a health risk in a considerable fraction of individuals in the HBM4EU teenager study sample, thereby confirming the conclusion drawn in the recent EFSA scientific opinion. This study underlines that HBM data are of added value in assessing the health risks of aggregate and cumulative exposure to PFASs, as such data are able to reflect exposure from different sources and via different routes.This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 733032 HBM4EU (www.HBM4EU.eu), and received co-funding from the au thors’ organizations. The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB), and the laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465). The PCB cohort (follow-up) received additional funding from the Ministry of Health of the Slovak Republic (program 07B0103).S

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level

    Get PDF
    The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of “free” Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their “free” counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age
    corecore