9 research outputs found

    The Demands of a Women\u27s College Soccer Season

    Get PDF
    The purpose of this study was to use GPS, accelerometers, and session rating of perceived exertion (sRPE) to examine the demands of a Division II women’s soccer team. Data was collected on 25 collegiate Division II women’s soccer players over an entire regular season (17 matches and 24 practices). ZephyrTM BioHarnesses (BHs) were used to collect tri-axial acceleration information and GPS derived variables for all matches and practices. Acceleration data was used to calculate Impulse Load, a measure of mechanical load that includes only locomotor related accelerations. GPS was used to quantify total distance and distance in six speed zones. Internal Training Loads were assessed via sRPE. Mean Impulse Load, total distance, and sRPE during match play was 20,120 ± 8609 N·s, 5.48 ± 2.35 km, and 892.50 ± 358.50, respectively. Mean Impulse Load, total distance, and sRPE during practice was 12,410 ± 4067 N·s, 2.95 ± 0.95 km, and 143.30 ± 123.50, respectively. Several very large to nearly perfect correlations were found between Impulse Load and total distance (r = 0.95; p < 0.001), Impulse Load and sRPE (r = 0.84; p < 0.001), and total distance and sRPE (r = 0.82; p < 0.001). This study details the mechanical demands of Division II women’s soccer match play. This study also demonstrates that Impulse Load is a good indicator of total distance

    Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Get PDF
    © 2011 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.DOI: 10.1186/1471-2164-12-161Background.Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results. To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions. The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence

    A computational genomics pipeline for prokaryotic sequencing projects

    Get PDF
    Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data

    Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB-AbaS-Loki

    Get PDF
    © 2017 Turner et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB-AbaS-Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME-AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB-PmaS-IMEP1 and Pseudomonas phages vB-Pae-Kakheti25, vB-PaeS-SCH-Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB-AbaS-Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663. Copyright

    Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial

    Get PDF

    The Demands of a Women’s College Soccer Season

    No full text
    The purpose of this study was to use GPS, accelerometers, and session rating of perceived exertion (sRPE) to examine the demands of a Division II women’s soccer team. Data was collected on 25 collegiate Division II women’s soccer players over an entire regular season (17 matches and 24 practices). ZephyrTM BioHarnesses (BHs) were used to collect tri-axial acceleration information and GPS derived variables for all matches and practices. Acceleration data was used to calculate Impulse Load, a measure of mechanical load that includes only locomotor related accelerations. GPS was used to quantify total distance and distance in six speed zones. Internal Training Loads were assessed via sRPE. Mean Impulse Load, total distance, and sRPE during match play was 20,120 ± 8609 N·s, 5.48 ± 2.35 km, and 892.50 ± 358.50, respectively. Mean Impulse Load, total distance, and sRPE during practice was 12,410 ± 4067 N·s, 2.95 ± 0.95 km, and 143.30 ± 123.50, respectively. Several very large to nearly perfect correlations were found between Impulse Load and total distance (r = 0.95; p < 0.001), Impulse Load and sRPE (r = 0.84; p < 0.001), and total distance and sRPE (r = 0.82; p < 0.001). This study details the mechanical demands of Division II women’s soccer match play. This study also demonstrates that Impulse Load is a good indicator of total distance

    The Demands of a Single Elimination Collegiate Tennis Tournament

    No full text
    Despite the considerable body of literature describing the demands of tennis, little is known about the accumulated physiological and mechanical loads associated with collegiate tennis tournament play. While microsensors have been used extensively to quantify demands in a variety of sports, particularly accelerometry and GPS sensors, limited data exists describing the demands of tennis match play using such microsensors (1,2). Aim. The purpose of this study was to use heart rate sensors and triaxial accelerometers to investigate the physiological and mechanical loads associated singles and doubles\u27 tennis play during a single elimination collegiate tennis tournament

    Life-Style and Genome Structure of Marine <i>Pseudoalteromonas</i> Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    No full text
    <div><p>Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using <i>Pseudoalteromonas</i> sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the <i>Siphoviridae</i> family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 <i>Pseudoalteromonas</i> strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-<i>Pseudoaltermonas</i> strain belonging to <i>Alteromonas</i> sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The <i>Pseudoalteromonas</i> phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new ‘rare virosphere’ phage–host model system.</p></div
    corecore