9 research outputs found

    Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics

    Get PDF
    International audienceGarden compost leachate was used to form microbial bioanodes under polarization at 0.4, 0.2 and +0.1 V/SCE. Current densities were 6.3 and 8.9 A m2 on average at 0.4 and +0.1 V/SCE respectively, with acetate 10 mM. The catalytic cyclic voltammetry (CV) showed similar electrochemical characteristics for all bioanodes and indicated that the lower currents recorded at 0.4 V/SCE were due to the slower interfacial electron transfer rate at this potential, consistently with conventional electrochemical kinetics.RNA- and DNA-based DGGE evidenced that the three dominant bacterial groups Geobacter, Anaerophaga and Pelobacter were identical for all bioanodes and did not depend on the polarization potential. Only non-turnover CVs showed differences in the redox equipment of the biofilms, the highest potential promoting multiple electron transfer pathways. This first description of a potential-independent electroactive microbial community opens up promising prospects for the design of stable bioanodes for microbial fuel cells

    Non-coding RNAs control of phytobeneficial genes expression by pseudomonas brassicacearum

    No full text
    International audienceRhizosphere microorganisms provide services to the plant, including growth promotion via hormone production, such as auxin, and protection against pathogens by producing some antibiotics such as cyanide and 2,4-diacetylphloroglucinol (DAPG). We recently showed that antifungal secondary metabolites (DAPG and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules and other genes required for plant-bacteria interactions, are positively controlled by four non-coding RNAs rsmW, rsmX, rsmY and rsmZ. To shed light on phytobeneficial bacterial gene expression in situ, we investigated the expression of genes that positively control traits involved in phytostimulation and phytoprotection. For that purpose, we used constructs fusing the promoter of rsmW, rsmX, rsmY and rsmZ to fluorescent proteins reporter genes. To evaluate the expression level, fluorescent spectrosphotometry was used, and to image expression in planta, confocal laser microscopy was used. This study highlights the key role played by non-coding RNAs in plant-bacteria interaction

    Remote Biodegradation of Ge–Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum

    No full text
    PMID: 27347687International audienceThe toxicity of high-aspect-ratio nanomaterials (HARNs) is often associated with oxidative stress. The essential nutrient Fe may also be responsible of oxidative stress through the production of reactive oxygen species. In the present study, it has been examined to what extent adding Fenton reaction promoting Fe impacted the toxicity of an alumino-germanate model HARN. Structural addition of only 0.95% wt Fe to Ge–imogolite not only alleviated the toxicity observed in the case of Fe-free nanotubes but also stimulated bacterial growth. This was attributed to the metabolization of siderophore-mobilized Fe from the nanotube structure. This was evidenced by the regulation of the homeostasis-monitoring intracellular Fe levels. This was accompanied by a biodegradation of the nanotubes approaching 40%, whereas the Fe-free nanomaterial remained nearly untouched

    The Transformation of Pristine and Citrate-Functionalized CeO2 Nanoparticles in a Laboratory Scale Aerobic Activated Sludge Reactor

    No full text
    International audienceEngineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2)

    Pearl Millet Genetic Traits Shape Rhizobacterial Diversity and Modulate Rhizosphere Aggregation

    No full text
    International audienceRoot exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the " RAS/RT ratio. " Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil

    The α/β hydrolase domain-containing protein 1 (ABHD1) acts as a lysolipid lipase and is involved in lipid droplet formation

    No full text
    Abstract Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Here, using Chlamydomonas as a model, we show that ABHD1, a member of the α/β hydrolase domain-containing protein family, is a novel type of LD-associated protein which stimulates LD formation through two distinct actions on the LD surface, one enzymatic and the other structural. ABHD1 was localized to LD surface in Chlamydomonas cells. The knockout mutants contained similar amounts of triacylglycerols (TAG) but their LDs showed an increased content in lyso- derivatives of the betaine lipid diacylglyceryl- N,N,N -trimethylhomoserine (DGTS). Over-expression of ABHD1 in Chlamydomonas induced LD formation and boosted TAG content, suggesting a key role in LD biogenesis. The purified recombinant ABHD1 protein hydrolyzed lyso-DGTS, producing a free fatty acid and a glyceryltrimethylhomoserine moiety. In vitro experiments using droplet- embedded vesicles showed that ABHD1 promoted LD emergence. Taken together, these results identify ABHD1 as a new player in LD formation by its lipase activity on lyso-DGTS and by its distinct biophysical property. This study further suggests that lipases targeted to LDs and able to act on their polar lipid coat may be interesting tools to promote LD assembly in eukaryotic cells. Significant statement Lipid droplets are subcellular organelles specialized for triacylglycerol storage. Their dynamic turnover is key to managing energy homeostasis in response to cell cycle states and environmental cues. To gain insights into LD biogenesis, we characterized a putative α/β- hydrolase (ABHD1) in the model algae Chlamydomonas reinhardtii and show it is located at the LD surface. We found that ABHD1 overexpression promotes LD formation and acts as a lipase mainly on lyso derivatives of the betaine lipid diacylglyceryl- N,N,N -trimethylhomoserine (DGTS), the major lipid constituent of the LD hemi-membrane. We also show that ABHD1 has a remarkable biophysical property favoring LD budding. This work thus identifies a novel type of lipase acting on betaine lipid and provides a first example of a protein with a dual function nvolved in LD formation
    corecore