110 research outputs found
EEG processing with TESPAR for depth of anesthesia detection
Poster presentation: Introduction Adequate anesthesia is crucial to the success of surgical interventions and subsequent recovery. Neuroscientists, surgeons, and engineers have sought to understand the impact of anesthetics on the information processing in the brain and to properly assess the level of anesthesia in an non-invasive manner. Studies have indicated a more reliable depth of anesthesia (DOA) detection if multiple parameters are employed. Indeed, commercial DOA monitors (BIS, Narcotrend, M-Entropy and A-line ARX) use more than one feature extraction method. Here, we propose TESPAR (Time Encoded Signal Processing And Recognition) a time domain signal processing technique novel to EEG DOA assessment that could enhance existing monitoring devices. ..
Prednisolone as preservation additive prevents from ischemia reperfusion injury in a rat model of orthotopic lung transplantation
The lung is, more than other solid organs, susceptible for ischemia reperfusion injury after orthotopic transplantation. Corticosteroids are known to potently suppress pro-inflammatory processes when given in the post-operative setting or during rejection episodes. Whereas their use has been approved for these clinical indications, there is no study investigating its potential as a preservation additive in preventing vascular damage already in the phase of ischemia. To investigate these effects we performed orthotopic lung transplantations (LTX) in the rat. Prednisolone was either added to the perfusion solution for lung preservation or omitted and rats were followed for 48 hours after LTX. Prednisolone preconditioning significantly increased survival and diminished reperfusion edema. Hypoxia induced vasoactive cytokines such as VEGF were reduced. Markers of leukocyte invasiveness like matrix metalloprotease (MMP)-2, or common pro-inflammatory molecules like the CXCR4 receptor or the chemokine (C-C motif) ligand (CCL)-2 were downregulated by prednisolone. Neutrophil recruitment to the grafts was only increased in Perfadex treated lungs. Together with this, prednisolone treated animals displayed significantly reduced lung protein levels of neutrophil chemoattractants like CINC-1, CINC-2α/β and LIX and upregulated tissue inhibitor of matrix metalloproteinase (TIMP)-1. Interestingly, lung macrophage invasion was increased in both, Perfadex and prednisolone treated grafts, as measured by MMP-12 or RM4. Markers of anti-inflammatory macrophage transdifferentiation like MRC-1, IL-13, IL-4 and CD163, significantly correlated with prednisolone treatment. These observations lead to the conclusion that prednisolone as an additive to the perfusion solution protects from hypoxia triggered danger signals already in the phase of ischemia and thus reduces graft edema in the phase of reperfusion. Additionally, prednisolone preconditioning might also lead to macrophage polarization as a beneficial long-term effect
Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification
Cuff overinflation and endotracheal tube obstruction: case report and experimental study
Background: Initiated by a clinical case of critical endotracheal tube (ETT) obstruction, we aimed to determine factors that potentially contribute to the development of endotracheal tube obstruction by its inflated cuff. Prehospital climate and storage conditions were simulated. Methods: Five different disposable ETTs (6.0, 7.0, and 8.0 mm inner diameter) were exposed to ambient outside temperature for 13 months. In addition, every second of these tubes was mechanically stressed by clamping its cuffed end between the covers of a metal emergency case for 10 min. Then, all tubes were heated up to normal body temperature, placed within the cock of a syringe, followed by stepwise inflation of their cuffs to pressures of 3 kPa and >=12 kPa, respectively. The inner lumen of the ETT was checked with the naked eye for any obstruction caused by the external cuff pressure. Results: Neither in tubes that were exposed to ambient temperature (range: -12°C to +44°C) nor in those that were also clamped, visible obstruction by inflated cuffs was detected at any of the two cuff pressure levels. Conclusions: We could not demonstrate a critical obstruction of an ETT by its inflated cuff, neither when the cuff was over-inflated to a pressure of 12 kPa or higher, nor in ETTs that had been exposed to unfavorable storage conditions and significant mechanical stress
Superimposed high-frequency jet ventilation combined with continuous positive airway pressure/assisted spontaneous breathing improves oxygenation in patients with H1N1-associated ARDS
Background: Numerous cases of swine-origin 2009 H1N1 influenza A virus (H1N1)-associated acute respiratory distress syndrome (ARDS) bridged by extracorporeal membrane oxygenation (ECMO) therapy have been reported; however, complication rates are high. We present our experience with H1N1-associated ARDS and successful bridging of lung function using superimposed high-frequency jet ventilation (SHFJV) in combination with continuous positive airway pressure/assisted spontaneous breathing (CPAP/ASB).
Methods: We admitted five patients with H1N1 infection and ARDS to our intensive care unit. Although all patients required pure oxygen and controlled ventilation, oxygenation was insufficient. We applied SHFJV/CPAP/ASB to improve oxygenation.
Results: Initial PaO2/FiO2 ratio prior SHFJV was 58-79 mmHg. In all patients, successful oxygenation was achieved by SHFJV (PaO2/FiO2 ratio 105-306 mmHg within 24 h). Spontaneous breathing was set during first hours after admission. SHFJV could be stopped after 39, 40, 72, 100, or 240 h. Concomitant pulmonary herpes simplex virus (HSV) infection was observed in all patients. Two patients were successfully discharged. The other three patients relapsed and died within 7 weeks mainly due to combined HSV infection and in two cases reoccurring H1N1 infection.
Conclusions: SHFJV represents an alternative to bridge lung function successfully and improve oxygenation in the critically ill
Soluble triggering receptor on myeloid cells-1 is expressed in the course of non-infectious inflammation after traumatic lung contusion: a prospective cohort study
Introduction: The triggering receptor expressed on myeloid cells-1 (TREM-1) is known to be expressed during bacterial infections. We investigated whether TREM-1 is also expressed in non-infectious inflammation following traumatic lung contusion.
Methods: In a study population of 45 adult patients with multiple trauma and lung contusion, we obtained bronchoalveolar lavage (BAL) (blind suctioning of 20 ml NaCl (0.9%) via jet catheter) and collected blood samples at two time points (16 hours and 40 hours) after trauma. Post hoc patients were assigned to one of four groups radiologically classified according to the severity of lung contusion based on the initial chest tomography. Concentration of soluble TREM-1 (sTREM-1) and bacterial growth were determined in the BAL. sTREM-1, IL-6, IL-10, lipopolysaccharide binding protein, procalcitonin, C-reactive protein and leukocyte count were assessed in blood samples. Pulmonary function was evaluated by the paO2/FiO2 ratio.
Results: Three patients were excluded due to positive bacterial growth in the initial BAL. In 42 patients the severity of lung contusion correlated with the levels of sTREM-1 16 hours and 40 hours after trauma. sTREM-1 levels were significantly (P < 0.01) elevated in patients with severe contusion (2,184 pg/ml (620 to 4,000 pg/ml)) in comparison with patients with mild (339 pg/ml (135 to 731 pg/ml)) or no (217 pg/ml (97 to 701 pg/ml)) contusion 40 hours following trauma. At both time points the paO2/FiO2 ratio correlated negatively with sTREM-1 levels (Spearman correlation coefficient = -0.446, P < 0.01).
Conclusions: sTREM-1 levels are elevated in the BAL of patients following pulmonary contusion. Furthermore, the levels of sTREM-1 in the BAL correlate well with both the severity of radiological pulmonary tissue damage and functional impairment of gas exchange (paO2/FiO2 ratio)
Cuff overinflation and endotracheal tube obstruction: case report and experimental study
Computational modeling of ketamine-induced changes in gamma-band oscillations: The contribution of parvalbumin and somatostatin interneurons
Ketamine, an NMDA receptor (NMDA-R) antagonist, produces psychotomimetic effects when administered in sub-anesthetic dosages. While previous research suggests that Ketamine alters the excitation/inhibition (E/I)-balance in cortical microcircuits, the precise neural mechanisms by which Ketamine produces these effects are not well understood. We analyzed resting-state MEG data from n = 12 participants who were administered Ketamine to assess changes in gamma-band (30–90 Hz) power and the slope of the aperiodic power spectrum compared to placebo. In addition, correlations of these effects with gene-expression of GABAergic interneurons and NMDA-Rs subunits were analyzed. Finally, we compared Ketamine-induced spectral changes to the effects of systematically changing NMDA-R levels on pyramidal cells, and parvalbumin-, somatostatin- and vasoactive intestinal peptide-expressing interneurons in a computational model of cortical layer-2/3 to identify crucial sites of Ketamine action. Ketamine resulted in a flatter aperiodic slope and increased gamma-band power across brain regions, with pronounced effects in prefrontal and central areas. These effects were correlated with the spatial distribution of parvalbumin and GluN2D gene expression. Computational modeling revealed that reduced NMDA-R activity in parvalbumin or somatostatin interneurons could reproduce increased gamma-band power by increasing pyramidal neuron firing rate, but did not account for changes in the aperiodic slope. The results suggest that parvalbumin and somatostatin interneurons may underlie increased gamma-band power following Ketamine administration in healthy volunteers, while changes in the aperiodic component could not be recreated. These findings have implications for current models of E/I-balance, as well as for understanding the mechanisms underlying the circuit effects of Ketamine
Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle
Aims Shock wave therapy (SWT) represents a clinically widely used angiogenic and thus regenerative approach for the treatment of ischaemic heart or limb disease. Despite promising results in preclinical and clinical trials, the exact mechanism of action remains unknown. Toll-like receptor 3, which is part of the innate immunity, is activated by binding doublestranded (ds) RNA. It plays a key role in inflammation, a process that is needed also for angiogenesis. We hypothesize that SWT causes cellular cavitation without damaging the target cells, thus liberating cytoplasmic RNA that in turn activates TLR3. Methods and results SWT induces TLR3 and IFN-b1 gene expression as well as RNA liberation from endothelial cells in a time-dependant manner. Conditioned medium from SWT-treated HUVECs induced TLR3 signalling in reporter cells. The response was lost when the medium was treated with RNase III to abolish dsRNAs or when TLR3 was silenced using siRNAs. In a mouse hind limb ischaemia model using wt and TLR3 2/2 mice (n ¼ 6), SWT induced angiogenesis and arteriogenesis only in wt animals. These effects were accompanied by improved blood perfusion of treated limbs. Analysis of main molecules of the TLR3 pathways confirmed TLR3 signalling in vivo following SWT. Conclusion Our data reveal a central role of the innate immune system, namely Toll-like receptor 3, to mediate angiogenesis upon release of cytoplasmic RNAs by mechanotransduction of SWT. -
Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia
Hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated as a possible mechanism underlying cognitive deficits and aberrant neuronal dynamics in schizophrenia. To test this hypothesis, we first administered a sub-anaesthetic dose of S-ketamine (0.006 mg/kg/min) or saline in a single-blind crossover design in 14 participants while magnetoencephalographic data were recorded during a visual task. In addition, magnetoencephalographic data were obtained in a sample of unmedicated first-episode psychosis patients (n = 10) and in patients with chronic schizophrenia (n = 16) to allow for comparisons of neuronal dynamics in clinical populations versus NMDAR hypofunctioning. Magnetoencephalographic data were analysed at source-level in the 1–90 Hz frequency range in occipital and thalamic regions of interest. In addition, directed functional connectivity analysis was performed using Granger causality and feedback and feedforward activity was investigated using a directed asymmetry index. Psychopathology was assessed with the Positive and Negative Syndrome Scale. Acute ketamine administration in healthy volunteers led to similar effects on cognition and psychopathology as observed in first-episode and chronic schizophrenia patients. However, the effects of ketamine on high-frequency oscillations and their connectivity profile were not consistent with these observations. Ketamine increased amplitude and frequency of gamma-power (63–80 Hz) in occipital regions and upregulated low frequency (5–28 Hz) activity. Moreover, ketamine disrupted feedforward and feedback signalling at high and low frequencies leading to hypo- and hyper-connectivity in thalamo-cortical networks. In contrast, first-episode and chronic schizophrenia patients showed a different pattern of magnetoencephalographic activity, characterized by decreased task-induced high-gamma band oscillations and predominantly increased feedforward/feedback-mediated Granger causality connectivity. Accordingly, the current data have implications for theories of cognitive dysfunctions and circuit impairments in the disorder, suggesting that acute NMDAR hypofunction does not recreate alterations in neural oscillations during visual processing observed in schizophrenia
- …
