15 research outputs found

    Atlantic Water Modification North of Svalbard in the Mercator Physical System From 2007 to 2020

    Get PDF
    The Atlantic Water (AW) inflow through Fram Strait, largest oceanic heat source to the Arctic Ocean, undergoes substantial modifications in the Western Nansen Basin (WNB). Evaluation of the Mercator system in the WNB, using 1,500 independent temperature‐salinity profiles and five years of mooring data, highlighted its performance in representing realistic AW inflow and hydrographic properties. In particular, favorable comparisons with mooring time‐series documenting deep winter mixed layers and changes in AW properties led us to examine winter conditions in the WNB over the 2007–2020 period. The model helped describe the interannual variations of winter mixed layers and documented several processes at stake in modifying AW beyond winter convection: trough outflows and lateral exchange through vigorous eddies. Recently modified AW, either via local convection or trough outflows, were identified as homogeneous layers of low buoyancy frequency. Over the 2007–2020 period, two winters stood out with extreme deep mixed layers in areas that used to be ice‐covered: 2017/18 over the northern Yermak Plateau‐Sofia Deep; 2012/13 on the continental slope northeast of Svalbard with the coldest and freshest modified AW of the 12‐year time series. The northern Yermak Plateau‐Sofia Deep and continental slope areas became “Marginal Convection Zones” in 2011 with, from then on, occasionally ice‐free conditions, 50‐m‐ocean temperatures always above 0 °C and highly variable mixed layer depths and ocean‐to‐atmosphere heat fluxes. In the WNB where observations require considerable efforts and resources, the Mercator system proved to be a good tool to assess Atlantic Water modifications in winter

    Changes in Arctic Halocline Waters along the East Siberian Slope and in the Makarov Basin from 2007 to 2020

    Get PDF
    The Makarov Basin halocline receives contributions from diverse water masses of Atlantic, Pacific, and East Siberian Sea origin. Changes in surface circulation (e.g., in the Transpolar Drift and Beaufort Gyre) have been documented since the 2000s, while the upper ocean column in the Makarov Basin has received little attention. The evolution of the upper and lower halocline in the Makarov Basin and along the East Siberian Sea slope was examined combining drifting platforms observations, shipborne hydrographic data, and modelled fields from a global operational physical model. In 2015, the upper halocline in the Makarov Basin was warmer, fresher, and thicker compared to 2008 and 2017, likely resulting from the particularly westward extension of the Beaufort Gyre that year. From 2012-onwards, cold Atlantic-derived lower halocline waters, previously restricted to the Lomonosov Ridge area, progressed eastward along the East Siberian slope, with a sharp shift from 155 to 170°E above the 1000 m isobath in winter 2011-2012, followed by a progressive eastward motion after winter 2015-2016 and reached the western Chukchi Sea in 2017. In parallel, an active mixing between upwelled Atlantic water and shelf water along the slope, formed dense warm water which also supplied the Makarov Basin lower halocline. The progressive weakening of the halocline, together with shallower Atlantic Waters, is emblematic of a new Arctic Ocean regime that started in the early 2000s in the Eurasian Basin. Our results suggest that this new Arctic regime now may extend toward the Amerasian Basin

    Changes in Atlantic Water circulation patterns and volume transports North of Svalbard over the last 12 years (2008-2020)

    Get PDF
    Atlantic Water (AW) enters the Arctic through Fram Strait as the West Spitsbergen Current (WSC). When reaching the south of Yermak Plateau, the WSC splits into the Svalbard, Yermak Pass and Yermak Branches. Downstream of Yermak Plateau, AW pathways remain unclear and uncertainties persist on how AW branches eventually merge and contribute to the boundary current along the continental slope. We took advantage of the good performance of the 1/12° Mercator Ocean model in the Western Nansen Basin (WNB) to examine the AW circulation and volume transports in the area. The model showed that the circulation changed in 2008-2020. The Yermak Branch strengthened over the northern Yermak Plateau, feeding the Return Yermak Branch along the eastern flank of the Plateau. West of Yermak Plateau, the Transpolar Drift likely shifted westward while AW recirculations progressed further north. Downstream of the Yermak Plateau, an offshore current developed above the 3800 m isobath, fed by waters from the Yermak Plateau tip. East of 18°E, enhanced mesoscale activity from the boundary current injected additional AW basin-ward, further contributing to the offshore circulation. A recurrent anticyclonic circulation in Sofia Deep developed, which also occasionally fed the western part of the offshore flow. The intensification of the circulation coincided with an overall warming in the upper WNB (0-1000 m), consistent with the progression of AW. This regional description of the changing circulation provides a background for the interpretation of upcoming observations

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Évolution de la halocline en OcĂ©an Arctique depuis 2007

    No full text
    In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4").Dans l'ocĂ©an Arctique, la stratification est dĂ©terminĂ©e par la salinitĂ©, contrairement aux ocĂ©ans des latitudes moyennes qui sont stratifiĂ©s par la tempĂ©rature. En d'autres termes, en Arctique, les eaux salĂ©es se retrouvent au fond, mĂȘme si elles sont plus chaudes. La halocline de l'ocĂ©an Arctique correspond Ă  une couche Ă©paisse de 100-200m avec de forts gradients verticaux de salinitĂ© et est situĂ©e entre 100 et 350m de profondeur. Elle s'insĂšre entre la glace de mer situĂ©e en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du rĂ©servoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un Ă©lĂ©ment clĂ© pour le maintien de la couverture de glace de mer. Durant cette thĂšse, nous avons Ă©tudiĂ© l'Ă©volution de la halocline de l'ocĂ©an Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues Ă  partir de plateformes dĂ©rivantes autonomes ou de campagnes en mer, et les simulations du modĂšle numĂ©rique de haute rĂ©solution spatiale (« PSY4 »)

    Under-Ice Phytoplankton Blooms in the Central Arctic Ocean: Insights From the First Biogeochemical IAOOS Platform Drift in 2017

    Get PDF
    In April 2017, the first Ice Atmosphere Arctic Ocean Observing System (IAOOS) platform equipped with biogeochemical sensors was deployed near the North Pole. Over the next 8 months it meandered southward with the ice, collecting measurements in the upper 250 m of Amundsen Basin, the Gakkel Ridge, Nansen Basin, and Fram Strait. Two distinct periods of primary production were encountered. The first bloom developed in the mixed layer in Amundsen Basin in May, reaching maximum chlorophyll a concentrations on the order of ~ 0.5 mg m−3 by the end of June. This bloom occurred earlier in the year than any other recorded bloom in Amundsen Basin, despite very limited under-ice light due to a thick layer of snow. The second bloom, encountered in Nansen Basin in August, was significantly larger (mean profile maximum chlorophyll a was 1.45 mg m−3). Examinations of the optical community index and colored dissolved organic matter concentrations suggest that the spring bloom consisted of small phytoplankton which may have been mixotrophic, while the summer bloom contained a greater diversity of planktonic size classes. The data set demonstrates the heterogeneity of Arctic under-ice primary production, and is a valuable resource for validating coupled Earth System models
    corecore