14 research outputs found

    Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway.

    Get PDF
    The ability to biosynthetically produce chemicals beyond what is commonly found in Nature requires the discovery of novel enzyme function. Here we utilize two approaches to discover enzymes that enable specific production of longer-chain (C5-C8) alcohols from sugar. The first approach combines bioinformatics and molecular modelling to mine sequence databases, resulting in a diverse panel of enzymes capable of catalysing the targeted reaction. The median catalytic efficiency of the computationally selected enzymes is 75-fold greater than a panel of naively selected homologues. This integrative genomic mining approach establishes a unique avenue for enzyme function discovery in the rapidly expanding sequence databases. The second approach uses computational enzyme design to reprogramme specificity. Both approaches result in enzymes with >100-fold increase in specificity for the targeted reaction. When enzymes from either approach are integrated in vivo, longer-chain alcohol production increases over 10-fold and represents >95% of the total alcohol products

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Computational Methods for Modeling Enzymes

    No full text
    Enzymes play a crucial role in modern biotechnology, industry, food processing and medical applications. Since their first discovered industrial use, man has attempted to discover new enzymes from Nature to catalyze different chemical reactions. In modern times, with the advent of computational methods, protein structure solutions, protein sequencing and DNA synthesis methods, we now have the tools to enable new approaches to rational enzyme engineering. With an enzyme structure in hand, a researcher may run an in silico experiment to sample different amino acids in the active site in order to identify new combinations which likely stabilize a transition-state-enzyme model. A suggested mutation can then be encoded into the desired enzyme gene, ordered, synthesized and tested. Although this truly astonishing feat of engineering and modern biotechnology allows the redesign of existing enzymes to acquire a new substrate specificity, it still requires a large amount of time, capital and technical capabilities. Concurrently, while making strides in computational protein design, the cost of sequencing DNA plummeted after the turn of the century. With the reduced cost of sequencing, the number of sequences in public databases of naturally occurring proteins has grown exponentially. This new, large source of information can be utilized to enable rational enzyme design, as long as it can be coupled with accurate modeling of the protein sequences. This work first describes a novel approach to reengineering enzymes (Genome Enzyme Orthologue Mining; GEO) that utilizes the vast amount of protein sequences in modern databases along with extensive computation modeling and achieves comparable results to the state-of-the-art rational enzyme design methods. Then, inspired by the success of this new method and aware of it's reliance on the accuracy of the protein models, we created a computational benchmark to both measure the accuracy of our models as well as improve it by encoding additional information about the structure, derived from mechanistic studies (Catalytic Geometry constraints; CG). Lastly, we use the improved accuracy method to automatically model hundreds of putative enzymes sequences and dock substrates into them to extract important features that are then used to inform experiments and design. This is used to reengineer a ribonucleotide reductase to catalyze a aldehyde deformylating oxygenase reaction. These chapters advance the field of rational enzyme engineering, by providing a novel technique that may enable efficient routes to rationally design enzymes for reactions of interest. These chapters also advance the field of homology modeling, in the specific domain in which the researcher is modeling an enzyme with a known chemical reaction. Lastly, these chapters and techniques lead to an example which utilizes highly accurate computational models to create features which can help guide the rational design of enzyme catalysts

    A new benchmark illustrates that integration of geometric constraints inferred from enzyme reaction chemistry can increase enzyme active site modeling accuracy.

    No full text
    Enzymes play a critical role in a wide array of industrial, medical, and research applications and with the recent explosion of genomic sequencing, we now have sequences for millions of enzymes for which there is no known structure. In order to utilize modern computational design tools for constructing inhibitors or engineering novel catalysts, the ability to accurately model enzymes is critical. A popular approach for modeling enzymes are comparative modeling techniques which can often accurately predict the global structural features. However, achieving atomic accuracy of an active site remains a challenge and is an issue when trying to utilize the molecular details for designing inhibitors or enhanced catalysts. Here we explore integrating knowledge about the required geometric orientation of conserved catalytic residues into the comparative modeling process in order to improve modeling accuracy. In order to investigate the utility of adding this information, we first carefully construct a benchmark set of reference structures to use. Consistent with previous findings, our benchmark demonstrates that the geometry between catalytic residues across an enzyme family is conserved and does not tend to deviate by more than 0.5Ã…. We then find that by integrating these geometric constraints during modeling, we can double the number of atomic level accuracy models (<1Ã… RMSD to the crystal structure ligand) within our benchmarking dataset, even for targets with templates as low as 20-30% sequence identity. Catalytic residues within an enzyme family are highly conserved and can often be readily identified through comparative sequence analysis to a known structure within the enzyme family. Therefore utilizing this readily available information has the potential to significantly improve drug design and enzyme engineering efforts for which there is no known structure for the enzyme of interest
    corecore