5,621 research outputs found

    Boltzmann and hydrodynamic description for self-propelled particles

    Full text link
    We study analytically the emergence of spontaneous collective motion within large bidimensional groups of self-propelled particles with noisy local interactions, a schematic model for assemblies of biological organisms. As a central result, we derive from the individual dynamics the hydrodynamic equations for the density and velocity fields, thus giving a microscopic foundation to the phenomenological equations used in previous approaches. A homogeneous spontaneous motion emerges below a transition line in the noise-density plane. Yet, this state is shown to be unstable against spatial perturbations, suggesting that more complicated structures should eventually appear.Comment: 4 pages, 3 figures, final versio

    Coordinated affect with mothers and strangers: A longitudinal analysis of joint engagement between 5 and 9 months of age

    Get PDF
    The coordination of affect in joint attention was assessed in a longitudinal study of 5- to 9-month-old infants as they interacted with mothers and strangers. Results showed that the coordination of affect with joint attention looks increased reliably with age. In addition, context effects were found such that joint attention looks increased while interacting with strangers but not with mothers. The study demonstrates the emergence of joint engagement before the end of the first year, and suggests that affect may play a key role in aspects of joint attention that may be unique to humans

    SuperLupus: A Deep, Long Duration Transit Survey

    Full text link
    SuperLupus is a deep transit survey monitoring a Galactic Plane field in the Southern hemisphere. The project is building on the successful Lupus Survey, and will double the number of images of the field from 1700 to 3400, making it one of the longest duration deep transit surveys. The immediate motivation for this expansion is to search for longer period transiting planets (5-8 days) and smaller radii planets. It will also provide near complete recovery for the shorter period planets (1-3 days). In March, April, and May 2008 we obtained the new images and work is currently in progress reducing these new data.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Symposium 253, 2008: Transiting Planet

    The dynamics of spiral arms in pure stellar disks

    Full text link
    It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional NN-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3×1063\times 10^6, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's QQ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of QQ, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3×1053\times 10^5, spiral arms grow faster in the beginning of the simulation (while QQ is small) and they cause a rapid increase of QQ. As a result, the spiral arms become faint in several Gyrs.Comment: 18 pages, 19 figures, accepted for Ap

    Soft deformable self-propelled particles

    Full text link
    In this work we investigate the collective behavior of self-propelled particles that deform due to local pairwise interactions. We demonstrate that this deformation alone can induce alignment of the velocity vectors. The onset of collective motion is analyzed. Applying a Gaussian-core repulsion between the particles, we find a transition to disordered non-collective motion under compression. We here explain that this reflects the reentrant fluid behavior of the general Gaussian-core model now applied to a self-propelled system. Truncating the Gaussian potential can lead to cluster crystallization or more disordered cluster states. For intermediate values of the Gaussian-core potential we for the first time observe laning for deformable self-propelled particles. Finally, without the core potential, but including orientational noise, we connect our description to the Vicsek approach for self-propelled particles with nematic alignment interactions.Comment: 6 pages, 7 figure

    Temperature in nonequilibrium systems with conserved energy

    Full text link
    We study a class of nonequilibrium lattice models which describe local redistributions of a globally conserved energy. A particular subclass can be solved analytically, allowing to define a temperature T_{th} along the same lines as in the equilibrium microcanonical ensemble. The fluctuation-dissipation relation is explicitely found to be linear, but its slope differs from the inverse temperature T_{th}^{-1}. A numerical renormalization group procedure suggests that, at a coarse-grained level, all models behave similarly, leading to a two-parameter description of their macroscopic properties.Comment: 4 pages, 1 figure, final versio

    Effect of geometry on the nose-region flow-field of shuttle entry-configurations

    Get PDF
    In order to determine the convective heat-transfer distribution for the nose region of the space shuttle entry configurations, a three-dimensional flow-field is described which may include extensive regions of separated flow. Because of the complexity of the flow field for the nose region, experimental data are needed to define the relation between the nose geometry and the resultant flow field. According to theoretical solutions of the three-dimensional boundary layer, the boundary layer separates from the leeward generator of a blunted cone at an alpha equal to the cone half-angle. Separation results from the transverse pressure gradient, i.e., the velocity derivative due to crossflow. The boundary layer limiting streamlines converge toward the singular point of sep aration. The separated region is bounded by an ordinary line of separation

    Star-galaxy separation in the AKARI NEP Deep Field

    Get PDF
    Context: It is crucial to develop a method for classifying objects detected in deep surveys at infrared wavelengths. We specifically need a method to separate galaxies from stars using only the infrared information to study the properties of galaxies, e.g., to estimate the angular correlation function, without introducing any additional bias. Aims. We aim to separate stars and galaxies in the data from the AKARI North Ecliptic Pole (NEP) Deep survey collected in nine AKARI / IRC bands from 2 to 24 {\mu}m that cover the near- and mid-infrared wavelengths (hereafter NIR and MIR). We plan to estimate the correlation function for NIR and MIR galaxies from a sample selected according to our criteria in future research. Methods: We used support vector machines (SVM) to study the distribution of stars and galaxies in the AKARIs multicolor space. We defined the training samples of these objects by calculating their infrared stellarity parameter (sgc). We created the most efficient classifier and then tested it on the whole sample. We confirmed the developed separation with auxiliary optical data obtained by the Subaru telescope and by creating Euclidean normalized number count plots. Results: We obtain a 90% accuracy in pinpointing galaxies and 98% accuracy for stars in infrared multicolor space with the infrared SVM classifier. The source counts and comparison with the optical data (with a consistency of 65% for selecting stars and 96% for galaxies) confirm that our star/galaxy separation methods are reliable. Conclusions: The infrared classifier derived with the SVM method based on infrared sgc- selected training samples proves to be very efficient and accurate in selecting stars and galaxies in deep surveys at infrared wavelengths carried out without any previous target object selection.Comment: 8 pages, 8 figure

    Coalescence of bubbles in a viscoelastic liquid

    Get PDF
    When two bubbles submerged in a liquid are brought closely together, the intermediate liquid film separating the bubbles begins to drain. Once the film ruptures, the bubbles coalesce and form a neck that expands with time. The dynamics of the neck growth are well understood in the context of pure, Newtonian liquids. Yet much less is known about the dynamics of this singularity when the surrounding liquid contains long flexible polymers, which provide viscoelastic characteristics to the liquid's properties. Here we experimentally study the coalescence of bubbles surrounded by polymer solutions. In contrast to drop coalescence, and in spite of the singular stretching of polymers, we find that the presence of the dissolved polymers does not at all affect the coalescence dynamics at early times. The polymer elasticity is found to slow down the flow only during the later stages of coalescence. These observations are interpreted using an asymptotic solution of the Oldroyd-B model, which predicts a strong stress singularity near the extremity of the neck. However, the polymer stress turns out to diverge only in the azimuthal direction, which can explain why elastic effects remain subdominant during the initial stages of coalescence.</p
    • …
    corecore