500 research outputs found

    An Evidence-Based Survey on Full-Scale Membrane Biological Reactors: Main Technical Features and Operational Aspects

    Get PDF
    This paper presents the results of a survey on full-scale membrane biological reactors (MBRs) wastewater treatment plants (WWTPs) in Italy. Alongside the main technical characteristics of the Italian MBR plants, the opinions of the plant managers on the operational advantages and disadvantages are described. As reported by the MBR technology suppliers, approximately 290 MBR municipal or industrial WWTPs are in operation in Italy, out of which 242 were studied in this survey. Data from more than one hundred municipal WWTPs were collected; these account for a total capacity of about 2,000,000 population equivalent (PE), which corresponds to 3% of the total organic load treated by the Italian WWTPs with secondary and advanced treatment. Usually, small installations adopt the flat-sheet rather than hollow-fiber membrane configuration. The main reasons why the MBR technology has been preferred to other options are its potential to be used for increasing the treatment capacity of existing plants and its compactness. Moreover, the followed operational advantages have been highlighted: easiness to comply with the discharge limits, removal of pathogens without specific disinfection units, possibility of internal reuse of the effluent, and process automation. Membrane fouling and plant shutdown have been recorded as the most relevant troubles, the last one indeed occurring only occasionally or rarely

    Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)

    Get PDF
    In response to the European Union's initiative toward achieving carbon neutrality, the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches, Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution, especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters, using the Aspen Plus software. Through the simulation analysis, it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell, without generating waste liquids containing excessive pollutant concentrations. Specifically, by evaporating 27% of the first current and 10% of the second, it was estimated that 26.2 kg/m(3) and 9.7 kg/m(3) of green hydrogen could be produced, respectively. Considering the EU's target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams, this hydrogen production could meet anywhere from 0.4% to 20% of Italy's projected electricity demand

    Precision Measurement of KS Meson Lifetime with the KLOE detector

    Get PDF
    Using a large sample of pure, slow, short lived K0 mesons collected with KLOE detector at DaFne, we have measured the KS lifetime. From a fit to the proper time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This is the most precise measurement today in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the Ks.Comment: 5 pages, 7 figure

    Determination of the branching ratios Γ(KL3π0)/Γ(KLπ+ππ0)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) and Γ(KL3π0)/Γ(KLπeν)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu )

    Get PDF
    Improved branching ratios were measured for the KL3π0K_L \to 3 \pi^0 decay in a neutral beam at the CERN SPS with the NA31 detector: Γ(KL3π0)/Γ(KLπ+ππ0)=1.611±0.037\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) = 1.611 \pm 0.037 and Γ(KL3π0)/Γ(KLπeν)=0.545±0.010\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu ) = 0.545 \pm 0.010. From the first number an upper limit for ΔI=5/2\Delta I =5/2 and ΔI=7/2\Delta I = 7/2 transitions in neutral kaon decay is derived. Using older results for the Ke3/Kμ\mu 3 fraction, the 3π0\pi^0 branching ratio is found to be Γ(KL3π0)/Γtot=(0.211±0.003)\Gamma (K_L \to 3 \pi^0 )/ \Gamma_{tot} = (0.211 \pm 0.003), about a factor three more precise than from previous experiments

    Measurement of the Ratio Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu) and Extraction of the CP Violation Parameter |eta+-|

    Full text link
    We present a measurement of the ratio of the decay rates Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu), denoted as Gamma(K2pi)/Gamma(Ke3). The analysis is based on data taken during a dedicated run in 1999 by the NA48 experiment at the CERN SPS. Using a sample of 47000 K2pi and five million Ke3 decays, we find Gamma(K2pi)/Gamma(Ke3) = (4.835 +- 0.022(stat) +- 0.016(syst)) x 10^-3. From this we derive the branching ratio of the CP violating decay KL -> pi+ pi- and the CP violation parameter |eta+-|. Excluding the CP conserving direct photon emission component KL -> pi+ pi- gamma, we obtain the results BR(KL -> pi+ pi-) = (1.941 +- 0.019) x 10^-3 and |eta+-| = (2.223 +- 0.012) x 10^-3.Comment: 20 pages, 7 figures, accepted by Phys. Lett.

    A new measurement of direct CP violation in two pion decays of the neutral kaon

    Get PDF
    The NA48 experiment at CERN has performed a new measurement of direct CP violation, based on data taken in 1997 by simultaneously collecting K_L and K_S decays into pi0pi0 and pi+pi-. The result for the CP violating parameter Re(epsilon'/epsilon) is (18.5 +/- 4.5(stat)} +/- 5.8 (syst))x10^{-4}.Comment: 18 pages, 6 figure

    Measurement of K^0_e3 form factors

    Get PDF
    The semileptonic decay of the neutral K meson, KL -> pi e nu (Ke3), was used to study the strangeness-changing weak interaction of hadrons. A sample of 5.6 million reconstructed events recorded by the NA48 experiment was used to measure the Dalitz plot density. Admitting all possible Lorentz-covariant couplings, the form factors for vector (f_+(q^2)), scalar (f_S) and tensor (f_T) interactions were measured. The linear slope of the vector form factor lambda_+ = 0.0284+-0.0007+-0.0013 and values for the ratios |f_S/f_+(0)| = 0.015^{+0.007}_{-0.010}+-0.012 and |f_T/f_+(0)| = 0.05^{+0.03}_{-0.04}+-0.03 were obtained. The values for f_S and f_T are consistent with zero. Assuming only Vector-Axial vector couplings, lambda_+ = 0.0288+-0.0004+-0.0011 and a good fit consistent with pure V-A couplings were obtained. Alternatively, a fit to a dipole form factor yields a pole mass of M = 859+-18 MeV, consistent with the K^*(892) mass.Comment: 16 pages, 7 figures. submitted to Phys. Lett.

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Measurement of K0e3 form factors

    Get PDF
    The semileptonic decay of the neutral K meson, K0L → π± e∓ ν (Ke3 ), was used to study the strangeness-changing weak interaction of hadrons. A sample of 5.6 million reconstructed events recorded by the NA48 experiment was used to measure the Dalitz plot density. Admitting all possible Lorentz-covariant couplings, the form factors for vector (f+(q2)), scalar (fS) and tensor (fT) interactions were measured. The linear slope of the vector form factor λ+ = 0.0284 ± 0.0007 ± 0.0013 and values for the ratios |fS/f+(0)| = 0.015 +0.007-0.010 ± 0.012 and |fT/f+(0)| = 0.05 +0.03-0.04 ± 0.03 were obtained. The values for fS and fT are consistent with zero. Assuming only vector–axial-vector couplings, λ+ = 0.0288 ± 0.0004 ± 0.0011 and a good fit consistent with pure V–A couplings were obtained. Alternatively, a fit to a dipole form factor yields a pole mass of M = 859 ± 18 MeV, consistent with the K∗(892) mass
    corecore