569 research outputs found

    Lack of effect of high-protein vs. high-carbohydrate meal intake on stress-related mood and eating behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consumption of meals with different macronutrients, especially high in carbohydrates, may influence stress-related eating behavior. We aimed to investigate whether consumption of high-protein vs. high-carbohydrate meals influences stress-related mood, food reward, i.e. 'liking' and 'wanting', and post-meal energy intake.</p> <p>Methods</p> <p>Participants (n = 38, 19m/19f, age = 25 ± 9 y, BMI = 25.0 ± 3.3 kg/m<sup>2</sup>) came to the university four times, fasted, once for a stress session receiving a high-protein meal, once for a rest session receiving a high-protein meal, once for a stress session receiving a high-carbohydrate meal and once for a rest session receiving a high-carbohydrate meal (randomized cross-over design). The high-protein and high-carbohydrate test meals (energy percentage protein/carbohydrate/fat 65/5/30 vs. 6/64/30) matched for energy density (4 kJ/g) and daily energy requirements (30%). Stress was induced using an ego-threatening test. Pre- and post-meal 'liking' and 'wanting' (for bread, filling, drinks, dessert, snacks, stationery (non-food alternative as control)) was measured by means of a computer test. Following the post-meal 'wanting' measurement, participants received and consumed their wanted food items (post-meal energy intake). Appetite profile (visual analogue scales), mood state (Profile Of Mood State and State Trait Anxiety Inventory questionnaires), and post-meal energy intake were measured.</p> <p>Results</p> <p>Participants showed increased feelings of depression and anxiety during stress (P < 0.01). Consumption of the test meal decreased hunger, increased satiety, decreased 'liking' of bread and filling, and increased 'liking' of placebo and drinks (P < 0.0001). Food 'wanting' decreased pre- to post-meal (P < 0.0001). The high-protein vs. high-carbohydrate test meal induced lower subsequent 'wanting' and energy intake (1.7 ± 0.3 MJ vs. 2.5 ± 0.4 MJ) only in individuals characterized by disinhibited eating behavior (factor 2 Three Factor Eating Questionnaire, n = 16), during rest (P ≤ 0.01). This reduction in 'wanting' and energy intake following the high-protein meal disappeared during stress.</p> <p>Conclusions</p> <p>Consumption of a high-protein vs. high-carbohydrate meal appears to have limited impact on stress-related eating behavior. Only participants with high disinhibition showed decreased subsequent 'wanting' and energy intake during rest; this effect disappeared under stress. Acute stress overruled effects of consumption of high-protein foods.</p> <p>Trial registration</p> <p>The study was registered in the Dutch Trial Register (<a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2040">NTR1904</a>). The protocol described here in this study deviates from the trial protocol approved by the Medical Ethical Committee of the Maastricht University as it comprises only a part of the approved trial protocol.</p

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Lower Blood Calcium Associates with Unfavorable Prognosis and Predicts for Bone Metastasis in NSCLC

    Get PDF
    Ionized calcium was involved in various cellular signal pathways,and regulates many cellular processes, including those relevant to tumorigenesis. We hypothesis that imbalance of calcium homeostasis is correlated with development of lung carcinomas. We collected the clinical data of 1084 patients with non small cell lung cancer (NSCLC) treated in Shandong Provincial Hospital, Shandong University. Logistic regression was used to determine the association between calcium levels and clinical characteristics, and COX regression and Kaplan-Meier model were applied to analyze risk factors on overall survival. Blood electrolytes were tested before treatment; and nearly 16% patients with NSCLC were complained with decreased blood calcium, which is more frequent than that in other electrolytes. Further, Multivariate logistic regression analysis disclosed that there were significant correlation between blood calcium decrease and moderate and poor differentiation (P = 0.012, OR = 1.926 (1.203–4.219)), squamous cell carcinoma (P = 0.024, OR = 1.968(1.094–3.540)), and bone metastasis (P = 0.032, OR = 0.396(0.235–0.669)). In multivariate COX regression analysis, advanced lymph node stage and decreased blood calcium were significantly and independent, unfavorable prognostic factors (P<0.001). Finally, the Kaplan-Meier Survival curve revealed that blood calcium decrease was associated with shorter survival (Log-rank; χ2 = 26.172,P<0.001). Our finding indicates that lower blood calcium levels are associated with a higher risk of unfavorable prognosis and bone metastasis of NSCLC

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Non-Invasive In Vivo Imaging of Calcium Signaling in Mice

    Get PDF
    Rapid and transient elevations of Ca2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca2+ concentration ([Ca2+]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies

    Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes

    Full text link
    Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participates in cognitive functions and information processing and is involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer: the modulation of intracellular calcium dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel model for calcium-induced-calcium release, we incorporate the regulation of the IP3 production and phosphorylation. Doing so we extended it to a three-state model (referred as the G-ChI model), that could account for Ca2+ oscillations triggered by endogenous IP3 metabolism as well as by IP3 production by external glutamate signals. Compared to previous similar models, our three-state models include a more realistic description of the IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2+ pathways endows the system with self-consistent oscillator properties and favor mixed frequency-amplitude encoding modes over pure amplitude modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications on the role of astrocytes in the synaptic transfer of information.Comment: 42 pages, 16 figures, 1 table. Figure filenames mirror figure order in the paper. Ending "S" in figure filenames stands for "Supplementary Figure". This article was selected by the Faculty of 1000 Biology: "Genevieve Dupont: Faculty of 1000 Biology, 4 Sep 2009" at http://www.f1000biology.com/article/id/1163674/evaluatio

    The Brain Reaction to Viewing Faces of Opposite- and Same-Sex Romantic Partners

    Get PDF
    We pursued our functional magnetic resonance imaging (fMRI) studies of the neural correlates of romantic love in 24 subjects, half of whom were female (6 heterosexual and 6 homosexual) and half male (6 heterosexual and 6 homosexual). We compared the pattern of activity produced in their brains when they viewed the faces of their loved partners with that produced when they viewed the faces of friends of the same sex to whom they were romantically indifferent. The pattern of activation and de-activation was very similar in the brains of males and females, and heterosexuals and homosexuals. We could therefore detect no difference in activation patterns between these groups
    corecore