28 research outputs found

    Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation

    Get PDF
    The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome

    Dissection of PIM serine/threonine kinases in FLT3-ITD–induced leukemogenesis reveals PIM1 as regulator of CXCL12–CXCR4-mediated homing and migration

    Get PDF
    FLT3-ITD–mediated leukemogenesis is associated with increased expression of oncogenic PIM serine/threonine kinases. To dissect their role in FLT3-ITD–mediated transformation, we performed bone marrow reconstitution assays. Unexpectedly, FLT3-ITD cells deficient for PIM1 failed to reconstitute lethally irradiated recipients, whereas lack of PIM2 induction did not interfere with FLT3-ITD–induced disease. PIM1-deficient bone marrow showed defects in homing and migration and displayed decreased surface CXCR4 expression and impaired CXCL12–CXCR4 signaling. Through small interfering RNA–mediated knockdown, chemical inhibition, expression of a dominant-negative mutant, and/or reexpression in knockout cells, we found PIM1 activity to be essential for proper CXCR4 surface expression and migration of cells toward a CXCL12 gradient. Purified PIM1 led to the phosphorylation of serine 339 in the CXCR4 intracellular domain in vitro, a site known to be essential for normal receptor recycling. In primary leukemic blasts, high levels of surface CXCR4 were associated with increased PIM1 expression, and this could be significantly reduced by a small molecule PIM inhibitor in some patients. Our data suggest that PIM1 activity is important for homing and migration of hematopoietic cells through modification of CXCR4. Because CXCR4 also regulates homing and maintenance of cancer stem cells, PIM1 inhibitors may exert their antitumor effects in part by interfering with interactions with the microenvironment

    Hermansky-Pudlak syndrome type 1 causes impaired anti-microbial immunity and inflammation due to dysregulated immunometabolism

    Get PDF
    Hermansky-Pudlak syndrome (HPS) types 1 and 4 are caused by defective vesicle trafficking. The mechanism for Crohn's disease-like inflammation, lung fibrosis, and macrophage lipid accumulation in these patients remains enigmatic. The aim of this study is to understand the cellular basis of inflammation in HPS-1. We performed mass cytometry, proteomic and transcriptomic analyses to investigate peripheral blood cells and serum of HPS-1 patients. Using spatial transcriptomics, granuloma-associated signatures in the tissue of an HPS-1 patient with granulomatous colitis were dissected. In vitro studies were conducted to investigate anti-microbial responses of HPS-1 patient macrophages and cell lines. Monocytes of HPS-1 patients exhibit an inflammatory phenotype associated with dysregulated TNF, IL-1α, OSM in serum, and monocyte-derived macrophages. Inflammatory macrophages accumulate in the intestine and granuloma-associated macrophages in HPS-1 show transcriptional signatures suggestive of a lipid storage and metabolic defect. We show that HPS1 deficiency leads to an altered metabolic program and Rab32-dependent amplified mTOR signaling, facilitated by the accumulation of mTOR on lysosomes. This pathogenic mechanism translates into aberrant bacterial clearance, which can be rescued with mTORC1 inhibition. Rab32-mediated mTOR signaling acts as an immuno-metabolic checkpoint, adding to the evidence that defective bioenergetics can drive hampered anti-microbial activity and contribute to inflammation

    BRAF/MAPK and GSK3 signaling converge to control MITF nuclear export

    Get PDF
    The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import–export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal

    Effect of a Perioperative, Cardiac Output-Guided Hemodynamic Therapy Algorithm on Outcomes Following Major Gastrointestinal Surgery A Randomized Clinical Trial and Systematic Review

    Get PDF
    Importance: small trials suggest that postoperative outcomes may be improved by the use of cardiac output monitoring to guide administration of intravenous fluid and inotropic drugs as part of a hemodynamic therapy algorithm.Objective: to evaluate the clinical effectiveness of a perioperative, cardiac output–guided hemodynamic therapy algorithm.Design, setting, and participants: OPTIMISE was a pragmatic, multicenter, randomized, observer-blinded trial of 734 high-risk patients aged 50 years or older undergoing major gastrointestinal surgery at 17 acute care hospitals in the United Kingdom. An updated systematic review and meta-analysis were also conducted including randomized trials published from 1966 to February 2014.Interventions: patients were randomly assigned to a cardiac output–guided hemodynamic therapy algorithm for intravenous fluid and inotrope (dopexamine) infusion during and 6 hours following surgery (n=368) or to usual care (n=366).Main outcomes and measures: the primary outcome was a composite of predefined 30-day moderate or major complications and mortality. Secondary outcomes were morbidity on day 7; infection, critical care–free days, and all-cause mortality at 30 days; all-cause mortality at 180 days; and length of hospital stay.Results: baseline patient characteristics, clinical care, and volumes of intravenous fluid were similar between groups. Care was nonadherent to the allocated treatment for less than 10% of patients in each group. The primary outcome occurred in 36.6% of intervention and 43.4% of usual care participants (relative risk [RR], 0.84 [95% CI, 0.71-1.01]; absolute risk reduction, 6.8% [95% CI, ?0.3% to 13.9%]; P?=?.07). There was no significant difference between groups for any secondary outcomes. Five intervention patients (1.4%) experienced cardiovascular serious adverse events within 24 hours compared with none in the usual care group. Findings of the meta-analysis of 38 trials, including data from this study, suggest that the intervention is associated with fewer complications (intervention, 488/1548 [31.5%] vs control, 614/1476 [41.6%]; RR, 0.77 [95% CI, 0.71-0.83]) and a nonsignificant reduction in hospital, 28-day, or 30-day mortality (intervention, 159/3215 deaths [4.9%] vs control, 206/3160 deaths [6.5%]; RR, 0.82 [95% CI, 0.67-1.01]) and mortality at longest follow-up (intervention, 267/3215 deaths [8.3%] vs control, 327/3160 deaths [10.3%]; RR, 0.86 [95% CI, 0.74-1.00]).Conclusions and relevance: in a randomized trial of high-risk patients undergoing major gastrointestinal surgery, use of a cardiac output–guided hemodynamic therapy algorithm compared with usual care did not reduce a composite outcome of complications and 30-day mortality. However, inclusion of these data in an updated meta-analysis indicates that the intervention was associated with a reduction in complication rate

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase.

    No full text
    Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a newly described Ca2+-mobilizing nucleotide that appears to target intracellular Ca2+-release channels distinct from those sensitive to inositol trisphosphate or ryanodine/cyclic ADP-ribose. Little, however, is known concerning the regulation of cellular NAADP levels. In the present study, we have characterized the metabolism of NAADP by brain membranes. From HPLC and MS analyses we show that loss of NAADP was associated with the appearance of a major product that is likely to be nicotinic acid-adenine dinucleotide (NAAD), the dephosphorylated form of NAADP. Dephosphorylation of NAADP, but not 3'-NAADP, was dramatically attenuated by Ca2+ chelators and stimulated by Ca2+ over a physiological range in a calmodulin-insensitive manner. In contrast, NADP was metabolized predominantly to ADP-ribose phosphate via glycohydrolase activity, although slower Ca2+-dependent dephosphorylation of both NADP and 2'-AMP could also be demonstrated. This is the first report describing a Ca2+-regulated 2'-specific phosphatase which is probably the major pathway for the inactivation of NAADP in brain. Our data provide a potential feedback mechanism for limiting NAADP-induced Ca2+ release within cells through stimulation of NAADP metabolism by Ca2+ and strongly support a signalling role for this novel nucleotide in the brain
    corecore