

Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review.

Pearse, RM; Harrison, DA; MacDonald, N; Gillies, MA; Blunt, M; Ackland, G; Grocott, MPW; Ahern, A; Griggs, K; Scott, R; Hinds, C; Rowan, K; OPTIMISE Study Group,

• "The final publication is available at http://jama.jamanetwork.com/article.aspx?articleid=1873985"

For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/11483

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

1	Eff	fect of a peri-operative, ca	rdiac output-guided, hemodynamic
2	the	erapy algorithm on outcor	nes following major gastrointestinal
3		surgery: A multi-cente	er randomized controlled trial
4			
5	Rup	pert M. Pearse MD, ¹ David A. Ha	rrison PhD, ² Neil MacDonald FRCA, ³ Michael
6	A. G	Gillies FRCA, ⁴ Mark Blunt FRCA, ⁵	Gareth Ackland PhD, ⁶ Michael P.W. Grocott
7	MD.	. ⁷ Aoife Ahern BSc. ⁸ Kathrvn Gri	ggs MSc. ⁹ Rachael Scott PhD. ¹⁰ Charles Hinds
0	,	EPCA ¹¹ and Kathrun Bowan	DDbil ¹² for the ODTIMISE study group
8		FRCA, and Kathryn Rowan	Define for the OPTIMISE study group
9 10	1	Professor Queen Many University of Lon	In IIK ECIM GRO
10	1. 2	Sanior statistician Intensive Care Nation	Nulit & Pasaarch Cantra Landon JJK WC1V 647
12	2.	Research fellow, Queen Mary University	of London JIK EC1M 6BO
13	<i>з</i> . 4	Consultant Critical Care Unit University	of Edinburgh TIK
14	5.	Consultant, Critical Care Unit, Ouversity	abeth Hospital. Kina's Lynn, UK.
15	<i>6</i> .	Senior lecturer. University College Londo	n. UK.
16	7.	Professor. Integrative Physiology and Crit	ical Illness Group. University of Southampton. UK SO17 1BJ.
17	8.	Trial manager, Queen Mary University of	London, UK EC1M 6BQ.
18	9.	Statistical research assistant, Intensive C	are National Audit & Research Centre, London, UK.
19	10.	Senior trial manager, Intensive Care Nati	onal Audit & Research Centre, London, UK.
20	11.	Professor, Queen Mary University of Long	lon, UK EC1M 6BQ.
21	12.	Professor, Intensive Care National Audit	& Research Centre, London, UK WC1V 6AZ.
22			
23	Corres	prrespondence to:	
24	Rupert Pearse,		
25	Adult (Critical Care Unit,	
26	Royal	London Hospital,	
27	Londo	on	
28	E1 1BE	В	
29	United	d Kingdom	
30	e-mail	l: r.pearse@qmul.ac.uk Tel: +44 20 35	94 0353
31			
32	Keyw	ords: surgery, complications; peri-ope	rative care; fluid therapy; randomized trial
33	Revise	ed: 21st March 2014	Word count: 3825

34	Summary
35	Importance
36	Annually, over 230 million patients undergo surgery worldwide. Complications and death are
37	frequent among high-risk patients undergoing major gastrointestinal surgery. Pooled small trials
38	suggest outcomes may be improved by peri-operative, cardiac output-guided, hemodynamic
39	therapy.
40	
41	Objective
42	To evaluate the clinical effectiveness of a peri-operative, cardiac output-guided, hemodynamic
43	therapy algorithm.
44	
45	Design
46	Pragmatic, multi-center, randomized trial and updated systematic review.
47	
48	Setting
49	17 acute hospitals in the UK.
50	
51	Participants
52	734 high-risk patients; aged over 50 years undergoing major gastrointestinal surgery.
53	
54	Interventions
55	Delivery of a peri-operative, cardiac output-guided, hemodynamic therapy algorithm for intra-
56	venous fluid and inotrope (dopexamine) infusion during and for six hours following surgery,
57	compared with usual peri-operative care.
58	

59 Main outcome measures

60 The primary outcome was a composite of pre-defined moderate or major post-operative

61 complications and mortality at 30 days following surgery. Secondary outcomes were morbidity on

- 62 day 7, infectious complications, critical care free days and all cause mortality at 30 days following
- 63 surgery, all cause mortality at 180 days following surgery and acute hospital length of stay.
- 64

65 Results

- 66 Baseline patient characteristics, clinical care and volumes of intra-venous fluid were similar
- 67 between groups. Allocated care was non-compliant for fewer than 10% of patients in each group.
- The primary outcome was 36.6% for the intervention and 43.4% for usual care (RR 0.84 [0.71-
- 69 1.01], ARR 6.8% [-0.3% to 13.9%]; p=0.07). There was no significant difference for any of the
- secondary outcomes. Five intervention patients (1.4%) experienced cardiovascular serious
- adverse events within 24 hours compared with none in the usual care group. In pre-specified
- analyses, the primary outcome treatment effect was strengthened after adjustment for protocol
- 73 compliance (RR 0.80 [0.61-0.99]) and exclusion of the first ten patients recruited at each site (RR
- 74 0.59 [0.41-0.84]). The findings of the updated systematic review suggest that patients receiving
- the intervention are less likely to develop complications (Intervention 488/1548 [31.5%] vs
- 76 Controls 614/1476 [41.6%]; RR 0.77 [0.71-0.83]).
- 77

78 Conclusions

- 79 Whilst the cardiac output-guided, hemodynamic therapy algorithm was not associated with a
- significant reduction in post-operative complications in this trial, the findings of the updated
- 81 systematic review suggest this intervention is associated with clinically important reductions in
- 82 complications rates.
- 83
- 84 **Trial registration:** http://www.controlled-trials.com/ISRCTN04386758

85 Short summary

86	Findings from small trials suggest post-operative outcomes may be improved by cardiac output-
87	guided, hemodynamic therapy but this remains unconfirmed. In a multi-center randomized trial,
88	we allocated 734 high-risk patients undergoing major gastrointestinal surgery to a hemodynamic
89	therapy algorithm for intra-venous fluid and inotrope (dopexamine) infusion during and six hours
90	following surgery, or usual care. The primary outcome of pre-defined moderate or major post-
91	operative complications was met by 36.6% of intervention patients and 43.4% of usual care
92	patients (RR 0.84 [0.71-1.01]; p=0.07). Whilst not statistically significant, these findings were
93	consistent with those of a recent Cochrane systematic review. When the systematic review was
94	updated to include our results, significantly fewer patients developed complications having
95	received this intervention (RR $0.70 [0.62-0.80]$; p=0.01). The combined findings of the randomized
96	trial and systematic review suggest cardiac output-guided hemodynamic therapy may be
97	associated with a clinically important reduction in complications after surgery.
98	

100 Introduction

101 Estimates suggest that over 230 million patients undergo surgery worldwide each year with 102 mortality reported between 1 and 4%.^{1,2} Complications and deaths are most frequent among 103 high-risk patients, those who are older or have co-morbid disease and undergo major 104 gastrointestinal or vascular surgery. Patients who develop complications, but survive to leave hospital, suffer reduced functional independence and longer-term survival.³⁻⁵ Variation in 105 mortality indicates both the potential and the need to improve survival after major surgery.^{2,6} 106 107 Given the high volumes or surgery, even a low rate of avoidable harm will be associated with a 108 large number of preventable deaths.

109

110 It is generally accepted that intra-venous fluid and inotropic drugs have an important effect on 111 patient outcome, in particular following major gastrointestinal surgery. Yet, they are commonly 112 prescribed on subjective criteria leading to wide variation in clinical practice.⁷ One possible 113 solution is the use of cardiac output monitoring to guide intra-venous fluid and inotropic drug 114 therapy as part of a hemodynamic therapy algorithm. This approach has been shown to modify inflammatory pathways, improve tissue perfusion and oxygenation,^{8,9} and possibly improve 115 clinical outcomes.¹⁰⁻¹⁶ The current evidence base consists of a number of small trials insufficient 116 117 to resolve controversies regarding potential harm associated with fluid excess, myocardial injury 118 and invasive forms of monitoring. As a result, this approach has not been widely adopted into 119 clinical practice. More recently, hemodynamic therapy algorithms have been adapted to utilize 120 less invasive forms of cardiac output monitoring and lower doses of inotropic therapy for shorter 121 periods.¹² These refinements have improved the feasibility, safety and costs but clinical 122 effectiveness remains unconfirmed. Despite this, use of hemodynamic therapy algorithms has 123 been recommended in a report commissioned by the Centers for Medicare and Medicaid Services 124 in the USA,¹⁷ and by the National Institute for Health and Care Excellence (NICE) in the UK,¹⁸

125	based on the findings of a number of small trials which suggest improved clinical outcomes. A
126	recent Cochrane review, however, has suggested that the treatment benefit may be more
127	marginal than previously believed. ¹⁵ The mortality benefit has become less apparent in more
128	recent trials with lower control group mortality. ¹⁴
129	
130	In this context, we developed a peri-operative, cardiac output-guided, hemodynamic therapy
131	algorithm for the administration of intra-venous fluid and inotropic therapy, supported by solid
132	clinical and mechanistic evidence. Our objective was to evaluate the clinical effectiveness of this
133	algorithm in a large, pragmatic, multi-center randomized controlled trial in high-risk patients
134	undergoing major gastrointestinal surgery. We then conducted an updated systematic review
135	incorporating the findings of this trial.

137 Methods

138 Trial design

139 OPTIMISE was a multi-center, randomized controlled trial conducted in seventeen acute hospitals 140 in the National Health Service in the United Kingdom. Adult patients, aged 50 years or over 141 undergoing major abdominal surgery involving the gastrointestinal tract of expected duration 142 greater than 90 minutes, were eligible for recruitment provided they satisfied one of the following 143 high-risk criteria: aged 65 years or over; presence of a defined risk factor for cardiac or respiratory disease; renal impairment (serum creatinine \geq 1.5 mg d⁻¹); diabetes mellitus; or emergency surgery. 144 145 Exclusion criteria included refusal of consent, pregnancy, acute pulmonary edema (within prior 146 seven days), acute myocardial ischemia (within prior 30 days) and patients undergoing surgery for 147 palliative treatment only. Investigators were asked not to randomize patients where the clinician 148 intended to use cardiac output monitoring for clinical reasons. OPTIMISE was approved by the East 149 London & City Research Ethics Committee (09/H0703/23) and the Medical and Healthcare products 150 Regulatory Agency and registered with Controlled Trials (ISRCTN04386758). Written informed 151 consent was obtained from all patients prior to surgery. Site visits were performed by RP and AA 152 for training and for source data verification. The trial protocol was lodged and is available online at 153 www.perioperativemedicine.net/OPTIMISE.

154

155 **Randomization and procedures to minimize bias**

Randomization was performed through a dedicated, secure, web-based system. Participants were allocated to treatment groups using a computer-generated, dynamic procedure (minimization) with a random component. Participants were allocated, with an 80% probability, to the group that minimized between group differences in trial site, urgency of surgery and surgical procedure category among all participants recruited to date. This was a pragmatic effectiveness trial and it was not possible to blind all investigators to study group allocation. To minimize bias, investigators were instructed not to reveal study group allocation unnecessarily. Patients were followed up by another investigator who, wherever possible, was unaware of allocation. Investigators performing follow-up self-assessed the extent to which they remained blinded. Outcomes were verified according to pre-defined criteria by the principal investigator or designee at each site, who was always blinded to allocation. The decision to admit a trial patient to critical care was made by clinical staff and recorded prior to randomization and surgery, allowing comparison with actual location of post-operative care.

169

170 Clinical management

171 The intervention period commenced with induction of anesthesia and continued until six hours172 following completion of surgery.

173

174 All patients

175 Peri-operative care for all patients was loosely defined to avoid extremes of clinical practice and 176 practice misalignment.¹⁹ All patients received standard measures to maintain oxygenation (SpO₂ 177 \geq 94%), hemoglobin (>80 gl⁻¹), core temperature (37 °C) and heart rate (<100 beats min⁻¹). 5% 178 dextrose was administered at 1 ml kg⁻¹ hr⁻¹ to satisfy maintenance fluid requirements. Additional 179 fluid was administered at the discretion of the treating clinician guided by pulse rate, arterial 180 pressure, urine output, core-peripheral temperature gradient, serum lactate and base excess. 181 Mean arterial pressure was maintained between 60 and 100 mmHg using an alpha adrenoceptor 182 agonist or vasodilator, as required. Post-operative analgesia was provided by epidural infusion 183 (bupivacaine and fentanyl) or intra-venous infusion (morphine or fentanyl). With the exception of 184 the interventions below, all other treatment decisions were at the discretion of, and taken by, 185 senior clinicians.

186

187

188 *Hemodynamic therapy algorithm group patients*

189 Intervention group patients received intra-venous fluid and inotropes according to a cardiac 190 output-guided, hemodynamic therapy algorithm (supplementary file). The algorithm was 191 developed for OPTIMISE by an expert group. It was designed to be delivered in the operating 192 room/post-anesthetic care unit by both medical and nursing staff, ensuring that admission for 193 critical care was not necessary for compliance. A cardiac output monitor was chosen which could 194 be used in conscious (extubated) patients (LiDCOrapid, LiDCO Ltd, UK). This technology has been extensively evaluated and in clinical use for more than ten years.²⁰ The hemodynamic therapy 195 196 algorithm was supported by solid clinical and mechanistic evidence and had a good cardiovascular safety profile.^{8-16,21-23} Intra-venous colloid solution was administered in 250ml boluses in order to 197 198 achieve and maintain a maximal value of stroke volume; no attempt was made to standardize choice of colloid. Dopexamine was administered at a fixed, low dose of 0.5 μ g kg⁻¹ min⁻¹ either 199 200 through a peripheral or a central venous catheter (Cephalon Ltd, Welwyn Garden City, UK). The choice and dose of inotrope was based on the findings of a previous meta-regression analysis.¹³ The 201 202 dose of dopexamine was reduced if the heart rate increased to 120% of baseline or 100 beats min⁻¹ 203 (whichever was greater) for more than 30 minutes despite adequate anesthesia and analgesia. If 204 the heart rate did not decrease despite dose reduction, then the infusion was discontinued. 205 206 Usual care group patients

These patients received usual peri-operative care although the use of a dynamic central venous
 pressure target was recommended. Cardiac output monitoring was not used in the usual care
 group unless specifically requested by clinical staff because of patient deterioration.

210

211 Trial endpoints

212 The primary effect estimate was the relative risk of a composite of pre-defined moderate or major

213 post-operative complications and mortality at 30 days following surgery (supplementary file).

214	Secondary outcomes were: Post-Operative Morbidity Survey (POMS) defined morbidity on day 7; ²⁴
215	infectious complications, critical care free days (number of days alive and not in critical care) and all
216	cause mortality at 30 days following surgery; all cause mortality at 180 days following surgery; and
217	acute hospital length of stay. Level of post-operative critical care was categorized according to
218	standard criteria. ²⁵ Patients were followed for 30 days by visit and through local computerized
219	records while in hospital. All patients were contacted at 30 days either by telephone for those who
220	had left hospital or by visit for those who had not. Where necessary, investigators contacted
221	community physicians or other hospitals, by telephone and in writing, for outstanding information
222	describing the primary outcome. All cause mortality at 180 days was assessed through the Office
223	for National Statistics. Data entry was performed through a dedicated, secure, web-based system.
224	Automated validation checks included plausibility ranges and cross checks between data fields.
225	Further data checks were performed centrally and through source data verification.
226	
227	Statistical analysis

Assuming a type I error rate of 5%, 345 patients per group (690 total) were required to detect, with 228 229 90% power, a reduction in the composite of pre-defined moderate or major post-operative 230 complications and mortality at 30 days following surgery from 50% in the usual care group to 37.5% 231 in the hemodynamic therapy algorithm group (absolute risk reduction 12.5%; relative risk reduction 25%).¹² Allowing for a 3% one-way, cross-over rate due to use of cardiac output monitoring in the 232 233 usual care group, this was increased to 367 per group (734 total). A planned interim analysis was 234 performed at halfway. Pre-defined stopping guidelines permitted early termination of the trial for 235 harm but not effectiveness.

236

Analyses were performed according to an a priori statistical analysis plan including all patients on
an intention to treat basis (supplementary file). Categorical data were compared using Fisher's

239 exact test. Differences in critical care free days and acute hospital length of stay were tested using 240 the Wilcoxon rank-sum test. Kaplan-Meier curves were plotted for all cause mortality up to 180 241 days following surgery. Adjustment for baseline data was made using a logistic regression model 242 including age, gender, urgency of surgery, surgical procedure category, ASA grade, planned location 243 following surgery, renal impairment, diabetes mellitus, risk factors for cardiac or respiratory 244 disease and random effect of site. Baseline variables were selected for inclusion in the adjusted 245 analysis according to anticipated relationship with outcome, including all variables used in the 246 minimization algorithm. Results for primary and secondary outcomes are reported as relative risks 247 (RR) with 95% confidence intervals (CI). Results for the primary outcome are additionally reported 248 as absolute risk reduction (ARR) with 95% CI. Results of the logistic regression model are reported 249 as adjusted odds ratios (OR) with 95% CI, with unadjusted OR for comparison.

250

251 Pre-specified secondary analyses were: a modified intention to treat analysis excluding patients 252 who did not undergo surgery; a compliance-adjusted analysis in which patients whose treatment 253 did not comply with allocation were assumed to have the same outcome as if they had been assigned to the alternative treatment group;²⁶ and scenario-based sensitivity analyses for missing 254 255 primary outcomes (a best cases analysis assuming all missing outcomes in the intervention group 256 were favorable and all missing outcomes in the usual care group were unfavorable and a worst 257 case analysis assuming the reverse). Pre-specified sub-group analyses were performed: by urgency 258 of surgery; by surgical procedure category; and by timing of recruitment (comparing the first ten 259 patients recruited at each site with those recruited subsequently (sites recruiting fewer than ten 260 patients were excluded). Continuous variables are presented as mean (SD) where normally 261 distributed or median (quartiles) where not. Categorical variables are presented as n (%). Analyses 262 were performed using Stata SE version 10.1. Significance was set at p<0.05 (two-tailed).

263

264 Systematic review

265	Using identical methods, we updated the previous Cochrane systematic review (SR) of published
266	randomized trials of 'Peri-operative increase in global blood flow to explicit defined goals and
267	outcomes following surgery' with the findings of the OPTIMISE Trial and other published trials
268	identified by an updated search. ¹⁵ CENTRAL (Cochrane Library 2014), MEDLINE (1966 to February
269	2014) and EMBASE (1982 to February 2014) were searched for randomized trials involving adult
270	patients (\geq 16 years) undergoing surgery in an operating room where the intervention met the
271	following criteria: Peri-operative administration of fluids, with or without inotropes/vasoactive
272	drugs, targeted to increase blood flow (relative to control) against explicit measured goals. 'Peri-
273	operative' was defined as: initiated within 24 hours before surgery and lasting up to 6 after surgery.
274	'Explicit measured goals' were defined as: cardiac index, oxygen delivery, oxygen consumption,
275	stroke volume, mixed venous oxygen saturation, oxygen extraction ratio or lactate. We selected the
276	following key outcomes: number of patients with complications (primary outcome variable for the
277	OPTIMISE trial), number of infections, length of postoperative hospital stay, mortality at longest
278	follow-up (primary outcome variable of Cochrane SR) and 28 day/30 day/hospital mortality.
279	Treatment effects were reported as relative risks (RR) with 95% CI for clinical variables or weighted
280	mean differences (SD) for length of hospital stay. Analyses were performed using Review Manager
281	(RevMan 5.2.8) using fixed effects models.

283 **Results**

284 A total of 734 patients were enrolled between June 2010 and November 2012; 368 patients were 285 allocated to the cardiac output-guided, hemodynamic therapy algorithm, and 366 to usual care. In 286 the usual care group, one patient was randomized in error and excluded from the study (eFigure 1). 287 Baseline patient characteristics were similar between the groups (Table 1). Most patient types 288 were well represented with the exception of those having emergency surgery (25 patients) and 289 those having urological or gynecological surgery involving the gut (nine patients). Clinical care 290 outside the trial intervention was also similar (Table 2), including admission for critical care. Overall 291 volumes of intra-venous fluid (colloid and crystalloid combined) administered during the 292 intervention period were similar (intervention 4190 ml versus usual care 4024 ml). For usual care 293 group patients, more intra-venous fluid was administered during than after surgery, while for 294 intervention group patients similar volumes were administered during surgery and during the six 295 hours following surgery. Intervention group patients received more colloid and less crystalloid than 296 usual care group patients. With the exception of dopexamine, use of vasopressor and inotropic 297 agents was similar between the groups. Fewer than 10% of patients in each group were non-298 compliant with their allocated treatment (eTable 1). This was achieved through the presence of 299 trained investigators, where necessary, to observe, advise or deliver the intervention (eTable 2). 300 Investigator self-assessment of blinding for determination of outcomes also indicated a high rate of 301 compliance with trial procedures (Table 3). 302

303 The primary outcome, a composite of pre-defined moderate or major post-operative complications

and mortality at 30 days following surgery, was met by 36.6% (134 of 366) of patients in the

intervention group and by 43.4% (158 of 364) of patients in the usual care group (RR 0.84 [0.71-

306 1.01], ARR 6.8% [-0.3% to 13.9%]; p=0.07) (Table 3). Following adjustment for baseline risk factors,

the observed treatment effect remained non-significant with an adjusted OR of 0.73 [0.53-1.00];

308 p=0.05 (unadjusted OR 0.75 [0.56-1.01]; p=0.07). The pre-specified, modified, intention to treat 309 analysis, in which three patients (all in the usual care group) who did not undergo surgery were 310 excluded, had little effect on the primary outcome (RR 0.84 [0.70-1.00]; p=0.06). In the prespecified, compliance-adjusted analysis conducted using established methodology,²⁶ the observed 311 312 treatment effect was strengthened when the 65 patients whose care was non-compliant (eTable 1) 313 were assumed to experience the same outcome as if they had been allocated to the alternative 314 group (RR 0.80 [0.61-0.99]; p=0.037). Scenario-based sensitivity analyses demonstrated that the 315 very small number of patients with missing primary outcome data had minimal influence on 316 treatment effect (RR 0.84 [0.70-1.00] to 0.85 [0.71-1.02]). 317 318 Five patients in the intervention group experienced serious adverse cardiac events within 24 hours

319 of the end of the intervention period (two tachycardia, two myocardial infarction and one 320 arrhythmia) compared with none in the usual care group (p=0.062). At 30 days following surgery, 321 however, the incidence of cardiovascular events was similar between the groups (Table 3). There 322 were no significant differences for any of the secondary outcomes: POMS defined morbidity on day 323 7; infectious complications, critical care free days and all cause mortality at 30 days following 324 surgery; all cause mortality at 180 days following surgery; and duration of acute hospital length of 325 stay (Table 4, Figure 1). No interaction was found for urgency of surgery, the intervention was 326 associated with a slight reduction in the primary outcome for the elective surgery sub-group. No 327 interaction was found for surgical procedure category, the intervention was associated with a slight 328 reduction in the primary outcome for patients undergoing small bowel +/- pancreas surgery. A 329 significant interaction (p=0.019) was found for timing of recruitment, the intervention was 330 associated with a reduction in the primary outcome for patients recruited later (RR 0.59 [0.41-0.84] 331 compared with earlier at each site (RR 1.51 [0.75-3.01] (Table 5).

332

333

334 Systematic review

- 335 The updated literature search identified seven additional trials including OPTIMISE, to provide a
- total of 38 trials that included 6595 participants with 23 trials including 3024 participants providing
- data describing our primary outcome. Fewer patients receiving the intervention developed
- 338 complications (Intervention 488/1548 [31.5%] vs Controls 614/1476 [41.6%]; RR 0.77 [0.71-0.83])
- 339 (Figure 2). The intervention was associated with a reduced incidence of post-operative infection
- 340 (Intervention 182/836 patients [21.8%] vs Controls 201/790 patients [25.4%]; RR 0.81 [0.69-0.95])
- and a reduced duration of hospital stay (mean reduction 0.80 days (0.97-0.62) (eFigures 2 and 3).
- 342 There was no significant reduction in hospital / 28 day / 30 day mortality (Intervention 159/3215
- deaths [4.9%] vs Controls 206/3160 deaths [6.5%]; RR 0.82 [0.67-1.01]) and borderline evidence of
- a reduction in mortality at longest follow-up (Intervention 267/3215 deaths [8.3%] vs Controls
- 345 327/3160 deaths [10.3%]; RR 0.86 [0.74-1.00]) (eFigures 4 and 5).

346

348 **Discussion**

349 The findings of the OPTIMISE trial were that in high-risk patients undergoing major abdominal 350 surgery involving the gastrointestinal tract, when compared with usual care, use of this peri-351 operative, cardiac output-guided, hemodynamic therapy algorithm was not associated with a 352 significant reduction in the composite primary outcome of pre-defined moderate or major post-353 operative complications and mortality at 30 days following surgery. However, after incorporating 354 the results of this large clinical trial into an updated systematic review of published trials, there was 355 evidence that cardiac output-guided, hemodynamic therapy is associated with a clinically important reduction in the number of patients who develop complications after surgery.¹⁵ In the 356 357 OPTIMISE trial, there was no difference in the secondary outcomes of POMS defined morbidity at 358 day 7; infectious complications, critical care-free days or all cause mortality at 30 days; all cause 359 mortality at 180 days; or acute hospital length of stay. However, the findings of the updated 360 systematic review suggest this treatment approach is associated with a significant reduction in the 361 number of patients who develop post-operative infection as well as in duration of hospital stay. 362 The findings of the mortality analyses provide borderline evidence but remain consistent with 363 benefit. 364 365 This is the largest trial of a peri-operative, cardiac output-guided, hemodynamic therapy algorithm, to date. OPTIMISE was designed to address several limitations in the previous evidence base.²⁷ The 366 367 large sample size allowed for comparison of the cardiac output-guided hemodynamic therapy 368 algorithm with usual peri-operative care, avoiding problems associated with alternative 'control' treatment algorithms which do not reflect typical practice.¹⁹ A large number of algorithms for 369 370 cardiac output guided hemodynamic therapy have been published describing a variety of options in 371 terms of hemodynamic end-points, use of inotropic agents and cardiac output monitoring. We used 372 an algorithm suited to the care of patients during and after major gastrointestinal surgery, that was

supported by solid clinical and mechanistic evidence and a good cardiovascular safety profile.^{8,910-15,} 373 374 $^{24-26}$ The β_2 -agonist dopexamine has mild inotropic and vasodilator effects and is the most widely 375 studied agent in this context. The findings of a meta-regression analysis suggested that 376 dopexamine infusion at low dose is associated with improved outcomes following major surgery.¹⁵ 377 Further modifications were made by an expert group to allow delivery in the operating room and 378 post-anesthetic care unit by both medical and nursing staff and in particular to ensure admission to 379 critical care was not necessary for compliance with the intervention. Importantly, the high rate of 380 compliance with the hemodynamic therapy algorithm used in this trial suggests this treatment 381 approach is feasible for use in routine clinical practice. A widely used cardiac output monitoring 382 technology was employed (although our findings are not specific to this device). In keeping with the 383 pragmatic nature of the trial, no attempt was made to standardize the choice of colloid in either 384 group. Recent evidence has suggested an increased incidence of acute kidney injury in critically ill patients receiving starch-based, colloid solutions.^{28,29} While we do not have individual patient data 385 386 describing the use of starch, a post-hoc survey of investigators suggested few patients received 387 this. A recent systematic review identified no evidence of acute kidney injury associated with the use of starch solutions in surgical patients.³⁰ 388

389

390 A potential weakness of OPTIMISE may be the use of a primary outcome that was a composite of 391 moderate or major post-operative complications and mortality. The components of this outcome 392 measure may reflect benefit, no effect or harm associated with the intervention. We controlled for 393 bias by assessing and grading this outcome according to pre-defined criteria and, although it is not 394 possible to blind all clinical staff administering complex interventions, our data suggest excellent 395 compliance with blinding for patient outcome assessment. Finally, the event rate in the usual care 396 arm was slightly lower than expected and cross-over in terms of cardiac output monitoring in the 397 usual care group was more frequent than predicted. These factors reduced the power of the trial, 398 perhaps resulting in failure to achieve statistical significance for the primary outcome. Although

399	emergency surgery was one of our inclusion criteria, we were only able to recruit a small number of
400	these patients. The approach to recruiting elective and emergency patients is quite different and
401	the design of future trials should take this into account. Whilst additional research staff were often
402	present during the trial, anesthesia and critical care staff would be able to deliver such algorithms
403	of care with minimal training. Myocardial injury is the most important adverse effect of
404	hemodynamic therapy algorithms; there was a low rate of cardiovascular serious adverse events
405	within 24 hours of the intervention and the incidence of cardiovascular events was similar between
406	the groups at 30 days following surgery. The trial findings also suggests that cardiac output-guided
407	fluid therapy need not result in excessive fluid administration but may lead to a more individualized
408	approach to achieving the correct dose of fluid, as and when required. Finally, a pre-specified
409	analysis of timing of recruitment suggested that a learning curve may have existed, consistent both
410	with an expectation for trials of complex interventions and from previous experience from
411	implementation in this field, and this warrants consideration in future research in this area. ³¹
412	Conclusion
413	In this large multi-center trial, the use of a peri-operative, cardiac output-guided, hemodynamic
414	therapy algorithm for the administration of intra-venous fluid and a low-dose inotrope
415	(dopexamine) was not associated with a significant reduction in a composite primary outcome of
416	pre-defined moderate or major post-operative complications and mortality at 30 days following
417	surgery. However, when incorporated into an updated systematic review, these findings
418	contributed to a clinically important reduction in the number of patients who developed
419	complications.

422 Author contributions

- 423 Prof Pearse had full access to all of the data in the study and takes responsibility for the integrity
- 424 of the data and the accuracy of the data analysis.
- 425 *Study concept and design:* Pearse, Harrison, Hinds, Rowan.
- 426 *Acquisition of data*: Pearse, MacDonald, Gillies, Blunt, Ackland, Ahern, Scott.
- 427 *Analysis and interpretation of data:* All authors.
- 428 *Drafting of the manuscript:* Pearse, Harrison, Hinds, Rowan.
- 429 Critical revision of the manuscript for important intellectual content: All authors.
- 430 *Statistical analysis:* Griggs, Harrison.
- 431 *Systematic review: Grocott, Pearse,* Harrison, Rowan.
- 432 *Obtained funding:* Pearse, Harrison, Hinds, Rowan.
- 433 *Administrative, technical, or material support:* Pearse, Hinds, Rowan.
- 434 *Study supervision:* Pearse.
- 435

436 **Conflict of interest disclosures**

- 437 All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of
- 438 Interest. RP has received equipment loans from LiDCO Ltd, a research grant from Circassia Holdings
- 439 Ltd. and has performed consultancy work for Edwards Lifesciences, Covidien and Massimo Inc. CH
- 440 and RP are named inventors on a lapsed patent application relating to the peri-operative use of
- 441 dopexamine. MG has received an honorarium from LiDCO Ltd for organizing a teaching workshop.
- 442 All other authors declare they have no conflicts of interest. MPWG has received unrestricted grant
- 443 funding from Deltex Medical Ltd, and fees for lecturing from Fresenius Kabi and Edwards
- 444 Lifesciences.
- 445

447	OPTIMISE Study group: (*denotes principal investigator)
448	Royal London Hospital, London: Neil MacDonald, Wendy Parnell, Edyta Niebrzegowska, Phoebe
449	Bodger, Laura Gallego, Eleanor McAlees, Marta Januszewska, Amanda Smith, Rupert Pearse*.
450	
451	Royal Infirmary of Edinburgh, Edinburgh: Michael Gillies*, Jean Antonelli, Craig Beattie, Corienne
452	McCulloch, Neil Young, David Cameron, Dermot McKeown, Timothy Walsh, Elizabeth Wilson, David
453	Hope, Alasdair Hay, Monika Beatty, Rowan Parks.
454	
455	Queen Elizabeth Hospital, Kings Lynn: Mark Blunt*, Peter Young, Parvez Moondi, John Gibson,
456	Joseph Carter, Beverley Watson, Helen Hobbinger, Sue Abdy, Robert Pretorius, Sherif Shafeek, Kate
457	Wong, Emma Gent, Rebecca Wolf, Gayathri Wijewardena, Ben Young, Michael Irvine, Alistair Steel.
458	
459	St James Hospital, Leeds: Stuart Elliot, Karen Griffiths, Zoe Beardow, Andrew Breen, Simon Howell,
460	Sian Birch, John Berridge*.
461	
462	University College Hospital, London: Gareth Ackland*, Laura Gallego, Anna Reyes, Rob Stephens.
463	
464	Newham University Hospital, London: Otto Mohr*, Toby Reynolds, Erik Fawcett, Beki Baytug,
465	Natalie Hester, Saranga Sothisrihari, James Cronin.
466	
467	James Cook University Hospital, Middlesborough: Jost Mullenheim*, Rachel Clarkson.
468	
469	Salford Royal Hospital, Manchester: Paul Dark*, Melanie Kershaw, Clare Stubbs.
470	
471	Royal Preston Hospital, Preston: Angela Walsh, Jackie Baldwin, Tom Owen*, Leslie Rice.

472	
473	St Thomas' Hospital, London: Stephen Tricklebank*, John Smith, Katie Lei, Barnaby Sanderson,
474	Adrian Pearce, Marlies Ostermann, Ruth Wan, Cathy McKenzie, William Berry.
475	
476	Royal Surrey County Hospital, Guildford: Justin Kirk-Bayley*, Debbie Clements, Matt Dickinson,
477	Shiny Shankar, Peter Carvalho, Lee Kelliher, Chris Jones.
478	
479	Broomfield Hospital, Chelmsford: Ben Maddison*, Chris Wright*, Fiona McNeela, Karen Swan,
480	Joanne Topliffe, Sarah Williams, Sue Smolen.
481	
482	Kings College Hospital, London: Gudrun Kunst*, Georgina Parsons, Fraser Dunsire, Fiona Wade-
483	Smith, Daniel Hadfield, Simon Cottam.
484	
485	Royal Devon & Exeter Hospital, Exeter: James Pittman*, Darryl Johnston*, Alison Potter, Melanie
486	Hutchings, Robert Price, Alex Grice, Mark Daugherty, Alastair Hellewell.
487	
488	Queens Medical Centre, Nottingham: Iain Moppett*, Marc Chikhani, Rachel Evley.
489	
490	Southampton University Hospital, Southampton: Clare Bolger, Jess Piper, Max Jonas*, Karen
491	Linford, Jennifer Peach.
492	
493	York Hospital, York: Jonathan Redman*, Helen Milner, Gail Taylor, Jonathan Wilson, David Yates.
494	
495	

496 Trial Steering Committee

- 497 Tim Coats (independent chair), University of Leicester, United Kingdom.
- 498 Rupert Pearse, Queen Mary University of London, United Kingdom.
- 499 Kathryn Rowan, Intensive Care National Audit & Research Centre, London, United Kingdom.
- 500 David Harrison, Intensive Care National Audit & Research Centre, London, United Kingdom.
- 501 Charles Hinds, Queen Mary University of London, United Kingdom.
- 502 David Bennett, Guys and St Thomas' Hospitals NHS Trust, London, United Kingdom.
- 503 Geoff Bellingan (independent member), University College London Hospitals NHS Trust, UK.
- 504 Dileep Lobo (independent member), University of Nottingham, United Kingdom.
- 505 Lisa Hinton (independent lay member), Oxford, United Kingdom.

506

507 Trial management team

- 508 Rupert Pearse, Queen Mary University of London, UK.
- 509 Kathryn Rowan, Intensive Care National Audit & Research Centre, London, UK.
- 510 Aoife Ahern, Intensive Care National Audit & Research Centre, London, UK.
- 511 Sarah Corlett, Intensive Care National Audit & Research Centre, London, UK.
- 512 Rachael Scott, Intensive Care National Audit & Research Centre, London, UK.
- 513 Sheila Harvey, Intensive Care National Audit & Research Centre, London, UK.
- 514 Jermaine Tan, Intensive Care National Audit & Research Centre, London, UK.
- 515 David Harrison, Intensive Care National Audit & Research Centre, London, UK.
- 516 Kathryn Griggs, Intensive Care National Audit & Research Centre, London, UK.

517

519 Intervention development group

- 520 Rupert Pearse, Queen Mary University of London, United Kingdom.
- 521 David Bennett, Guys and St Thomas' Hospitals NHS Trust, London, United Kingdom.
- 522 Charles Hinds, Queen Mary University of London, United Kingdom.
- 523 Richard Beale, Guys and St Thomas' Hospitals NHS Trust, London, United Kingdom.
- 524 Owen Boyd, Brighton and Sussex University Hospitals, Brighton, United Kingdom.
- 525 Kathryn Rowan, Intensive Care National Audit & Research Centre, London, United Kingdom.
- 526 David Harrison, Intensive Care National Audit & Research Centre, London, United Kingdom.
- 527

528 Data monitoring & ethics committee

- 529 Simon Gates (chair), University of Warwick, United Kingdom,
- 530 Danny McAuley, Queens University Belfast, United Kingdom
- 531 Tom Treasure, University College Hospitals London, United Kingdom.
- 532
- 533

534 Funding / support

- 535 The trial was funded through a National Institute for Health Research (UK) Clinician Scientist Award
- 536 held by RP. Cardiac output monitoring equipment was provided on loan without charge by LiDCO
- 537 Ltd. Dopexamine was supplied at a small discount by Cephalon Inc. and through additional, non-
- 538 grant funded provision of staff time and resources from the Intensive Care National Audit &
- 539 Research Centre.

540

541

542 Role of the funder

- 543 The funding bodies had no role in the design and conduct of the study; collection, management,
- analysis, and interpretation of the data, preparation, review, or approval of the manuscript and
- 545 decision to submit the manuscript for publication.

547 **References**

548	1.	Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a
549		modelling strategy based on available data. <i>Lancet.</i> 2008;372(9633):139-144.

- Pearse RM, Moreno RP, Bauer P, et al. Mortality after surgery in Europe: a 7 day cohort study. *Lancet*.
 2012;380(9847):1059-1065.
- 552 3. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Determinants of long-term
 553 survival after major surgery and the adverse effect of postoperative complications. *Ann Surg.*
- 554 2005;242(3):326-341.
- Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for service program. *N Engl J Med.* 2009;360(14):1418-1428.
- 557 5. Head J, Ferrie JE, Alexanderson K, Westerlund H, Vahtera J, Kivimaki M. Diagnosis-specific sickness

absence as a predictor of mortality: the Whitehall II prospective cohort study. *BMJ*. 2008;337:a1469.

6. Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery.

560 *N Engl J Med.* 2009;361(14):1368-1375.

- 561 7. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in
- 562 patients undergoing high risk surgery: a survey among North American and European
- anesthesiologists. *Critical Care*. 2011;15(4):R197.
- 564 8. Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM. Haemodynamic
- optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised
 controlled trial. *Crit Care.* 2010;14(4):R151.
- Bangash MN, Patel NS, Benetti E, et al. Dopexamine can attenuate the inflammatory response and
 protect against organ injury in the absence of significant effects on haemodynamics or regional
 microvascular flow. *Critical Care.* 2013;17(2):R57.
- **10.** Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative
- 571 increase of oxygen delivery on mortality in high-risk surgical patients. *JAMA*. 1993;270(22):2699-2707.
- **11.** Wilson J, Woods I, Fawcett J, et al. Reducing the risk of major elective surgery: randomised controlled
- trial of preoperative optimisation of oxygen delivery. *BMJ*. 1999;318(7191):1099-1103.

57412.Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after575major surgery reduces complications and duration of hospital stay. A randomised, controlled trial

576 [ISRCTN38797445]. *Crit Care.* 2005;9(6):R687-693.

- 577 13. Pearse RM, Belsey JD, Cole JN, Bennett ED. Effect of dopexamine infusion on mortality following
- 578 major surgery: individual patient data meta-regression analysis of published clinical trials. *Crit Care*579 *Med.* 2008;36(4):1323-1329.
- Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive
 hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical
 patients. *Anesth Analg.* 2011;112(6):1392-1402.
- 58315.Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase584in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database of
- 585 *Systematic Reviews*. 2012;11:CD004082.
- 586 16. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of
 587 hospital stay after major surgery. *Anesthesiology*. 2002;97(4):820-826.
- 588 **17.** Esophageal Doppler ultrasound based cardiac output monitoring for real time therapeutic
- 589 management of hospitalized patients. 2007;
- 590 http://www.cms.gov/determinationprocess/downloads/id45TA.pdf.
- 591 **18.** CardioQ-ODM oesophageal doppler monitor. 2011;
- 592 http://www.nice.org.uk/nicemedia/live/13312/52624/52624.pdf.
- 593 **19.** Deans KJ, Minneci PC, Suffredini AF, et al. Randomization in clinical trials of titrated therapies:
- 594 unintended consequences of using fixed treatment protocols. *Critical care medicine*. 2007;35(6):1509-
- 595 1516.
- 596 20. Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and
- 597 arterial pulse pressure to estimate rapid changes in stroke volume in humans. *Crit Care Med.*
- 598 2008;36(11):3001-3007.
- Pearse RM, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett D. The incidence of myocardial
 injury following post-operative Goal Directed Therapy. *BMC Cardiovasc Disord*. 2007;7:10.

601 22. Takala J, Meier-Hellmann A, Eddleston J, Hulstaert P, Sramek V. Effect of dopexamine on outcome 602 after major abdominal surgery: a prospective, randomized, controlled multicenter study. European 603 Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med. 604 2000;28(10):3417-3423. 605 23. Stone MD, Wilson RJ, Cross J, Williams BT. Effect of adding dopexamine to intraoperative volume 606 expansion in patients undergoing major elective abdominal surgery. Br J Anaesth. 2003;91(5):619-607 624. 608 24. Grocott MP, Browne JP, Van der Meulen J, et al. The Postoperative Morbidity Survey was validated 609 and used to describe morbidity after major surgery. J Clin Epidemiol. 2007;60(9):919-928. 610 25. Eddleston J, Goldhill D, Morris J. Levels of Critical Care for Adult Patients. London: Intensive Care 611 Society;2009. 612 26. Cuzick J, Edwards R, Segnan N. Adjusting for non-compliance and contamination in randomized 613 clinical trials. Statistics in medicine. 1997;16(9):1017-1029. 614 27. MacDonald N, Pearse RM. Peri-operative hemodynamic therapy: only large clinical trials can resolve 615 our uncertainty. Critical Care. 2011;15(3):122. 616 28. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in 617 severe sepsis. The New England Journal of Medicine. 2012;367(2):124-134. 618 29. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive 619 care. The New England Journal of Medicine. 2012;367(20):1901-1911. 620 30. Gillies MA, Habicher M, Jhanji S, et al. Incidence of postoperative death and acute kidney injury 621 associated with i.v. 6% hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth. 622 2013. 623 31. Kuper M, Gold SJ, Callow C, et al. Intraoperative fluid management guided by oesophageal Doppler 624 monitoring. BMJ. 2011;342:d3016.

625

626 Figure legends

628	Figure 1. Kaplan-Meier cumulative incidence plots for mortality by treatment allocation
629	to 180 days from start of surgery
630	Log rank test p-value: 0.093.
631	
632	
633	Figure 2. Forest plot of meta-analysis for number of patients developing complications
634	after surgery.
635	
636	

637 Table 1: Baseline patient characteristics

All data presented as in (76)	638	All data	presented	as n (%)
-------------------------------	-----	----------	-----------	----------

639 * Eligibility criterion

† Minimization criterion

- **‡** Patients may have more than one risk factor

	Cardiac output-guided	
	hemodynamic therapy	Usual care
	algorithm	(n=365)
	(n=368)	
Age (years)	71.3 (8.4)	72.2 (8.6)
Age*		
50-64 years	68 (18.5)	57 (15.6)
≥ 65 years	300 (81.5)	308 (84.4)
Sex		
Male	237 (64.4)	229 (62.7)
Female	131 (35.6)	136 (37.3)
Urgency of surgery*†		
Elective	356 (96.7)	352 (96.4)
Emergency	12 (3.3)	13 (3.6)
Baseline risk factors*‡		
Renal impairment	26 (7.1)	12 (3.3)
Diabetes mellitus	57 (15.5)	65 (17.8)
Pre-defined risk factor for cardiac or respiratory	117 (31.8)	118 (32.3)
disease		
Planned surgical procedure category [†]		
Upper gastrointestinal	110 (29·9)	114 (31·2)
Lower gastrointestinal	167 (45·4)	163 (44·7)
Small bowel +/- pancreas	86 (23·4)	84 (23·0)
Urological or gynecological surgery involving gut	5 (1·4)	4 (1·1)
ASA grade		
1	21 (5.7)	24 (6.6)
2	200 (54.5)	174 (48.1)
3	143 (39.0)	155 (42.8)
4	3 (0.8)	9 (2.5)
Planned location following surgery		
Critical care unit (level 3)	275 (74.7)	276 (75.6)
Critical care unit (level 2)	33 (9.0)	33 (9.0)
Post-surgical recovery unit	4 (1.1)	7 (1.9)
Ward	56 (15.2)	49 (13.4)

•••

646 Table 2: Clinical management of patients during intervention period (during surgery and

- 647 six hours following surgery)
- 648 Data presented as mean (SD) or n (%)
- 649 * Two patients (one in each group) missing data on anesthetic technique

650 **†** Two patients (both usual care) missing data on fluids both during surgery and during six hours following

surgery; one patient (hemodynamic therapy algorithm) missing data on fluids during six hours following

- 652 surgery; one patient (hemodynamic therapy algorithm) missing data on fluids during surgery; one patient
- 653 (usual care) missing data on crystalloid during six hours following surgery; one patient (hemodynamic
- 654 therapy algorithm) missing data on blood products during six hours following surgery
- 655 §Two patients (one in each group) missing data on vasopressor or inotrope agents both bolus and
- 656 infusion; one patient (usual care) missing data on vasopressor or inotrope infusion
- 657

a Bulucu	
c therapy	Usual care
hm	(n=362)
7)	
·350)	260 (195-360)
.2)	105 (29.1)
.8)	256 (70.9)
10)	2420 (1382)
54)	670 (367)
13)	708 (695)
98)	226 (361)
23)	95 (542)
5)	10 (66)
	270 (74.8)
5.1)	108 (30.0)
.3)	246 (68.0)
.4)	40 (11.0)
7)	9 (2.5)
.5)	67 (18.5)
7	3) 4) 5)

659

661 **Table 3: Results for primary outcome**

- 662 All data presented as n (%)
- 663 *Six patients (three hemodynamic therapy algorithm, three usual care) missing data on self-assessment
- 664 of blinding of outcome assessment
- ⁶⁶⁵ [†]Includes three patients (two hemodynamic therapy algorithm, one usual care) who died within 30 days
- 666

	Cardiac output-guided			
	hemodynamic therapy	Usual care	Relative risk	р-
	algorithm	(n=364)	(95% CI)	value
	(N=366)			
Composite				
Pre-defined moderate or major post-operative	124 (25 5)	450 (42.4)	0.84	0.07
complications and mortality at 30 days	134 (36.6)	158 (43.4)	(0.71-1.01)	0.07
following surgery				
Individual elements				
Mortality	12 (3.3)	11 (3.0)		
Pulmonary embolism	4 (1.1)	1 (0.3)		
Myocardial ischemia or infarction	10 (2.7)	8 (2.2)		
Arrhythmia	39 (10.7)	40 (11.0)		
Cardiac or respiratory arrest	16 (4.4)	14 (3.8)		
Limb or digital ischemia	2 (0.5)	1 (0.3)		
Cardiogenic pulmonary edema	1 (0.3)	2 (0.5)		
Acute respiratory distress syndrome	3 (0.8)	4 (1.1)		
Gastrointestinal bleed	13 (3.6)	8 (2.2)		
Bowel infarction	2 (0.5)	5 (1.4)		
Anastomotic breakdown	12 (3.3)	16 (4.4)		
Paralytic ileus	20 (5.5)	27 (7.4)		
Acute psychosis	3 (0.8)	8 (2.2)		
Stroke	1 (0.3)	0 (0)		
Acute kidney injury	17 (4.6)	17 (4.7)		
Infection, source uncertain	11 (3.0)	9 (2.5)		
Urinary tract infection	9 (2.5)	9 (2.5)		
Surgical site infection	22 (6.0)	39 (10.7)		
Organ/space infection	20 (5.5)	36 (9.9)		
Bloodstream infection	6 (1.6)	15 (4.1)		
Nosocomial pneumonia	36 (9.8)	39 (10.7)		
Post-operative hemorrhage	6 (1.6)	4 (1.1)		
Self-assessment of blinding for outcome ass	essment*			
Assessor suitably blinded	342 (94.2)	349 (96.7)		
Assessor may have known allocation	9 (2.5)	6 (1.7)		
Assessor knew allocation ⁺	12 (3.3)	6 (1.7)		

Table 4: Results for secondary outcomes

669	Odds ratios for all cause mortality at 30 days following surgery: unadjusted 1.09 (0.48-2.45); adjusted
670	1.20 (0.51-2.82); p=0.68
671	Odds ratios for all cause mortality at 180 days following surgery: unadjusted 0.63 (0.39-1.04); adjusted
672	0.61 (0.36-1.04); p=0.071
673	Data presented as median (quartiles) or n (%)
674	*For patients alive and in hospital on day 7 following start of surgery
675	

	Cardiac output-guided,	Usual care	Relative	p- value
	algorithm		CI)	value
Post-Operative Morbidity	182 (66.2)	195 (67.9)	0.97	0.72
Survey defined morbidity at 7	(n=275)	(n=287)	(0.87-1.09)	
days following surgery*				
Infectious complications at	87 (23.8)	108 (29.7)	0.80	0.08
30 days following surgery	(n=366)	(n=364)	(0.63-1.02)	
Critical care free days at 30	27 (26-29)	28 (25-29)		0.98
days following surgery	(n=366)	(n=364)		
All cause mortality at 30 days	12 (3.3)	11 (3.0)	1.08	1.00
following surgery	(n=366)	(n=364)	(0.48-2.43)	
All cause mortality at 180	28 (7.7)	42 (11.6)	0.66	0.08
days following surgery	(n=363)	(n=361)	(0.42-1.05)	
Duration of post-operative	10 (7-14)	11 (7-17)		0.05
hospital stay	(n=359)	(n=356)		
Curringer	10 (7-14)	11 (7-17)		
Survivors	(n=343)	(n=343)		
Non survivors	7 (3-33)	16 (9-36)		
	(n=16)	(n=13)		

677

	Protoc	ol	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% Cl
Shoemaker 1988	8	28	30	60	1.7%	0.57 [0.30, 1.08]	1988	
Berlauk 1991	11	68	9	21	1.3%	0.38 [0.18, 0.79]	1991	
Mythen 1995	0	30	6	30	0.1%	0.08 [0.00, 1.31]	1995	· · · · · · · · · · · · · · · · · · ·
Sinclair 1997	1	20	1	20	0.1%	1.00 [0.07, 14.90]	1997	
Ueno 1998	4	16	5	18	0.5%	0.90 [0.29, 2.78]	1998	
Wilson 1999	38	92	28	46	6.2%	0.68 [0.48, 0.95]	1999	
Lobo 2000	6	19	12	18	1.3%	0.47 [0.23, 0.99]	2000	
Conway 2002	5	29	9	28	0.8%	0.54 [0.20, 1.40]	2002	
Pearse 2005	27	62	41	60	6.3%	0.64 [0.46, 0.89]	2005	
Wakeling 2005	24	67	38	67	4.8%	0.63 [0.43, 0.93]	2005	
Noblett 2006	1	51	8	52	0.2%	0.13 [0.02, 0.98]	2006	· · · · · · · · · · · · · · · · · · ·
Jerez 2001	53	181	65	209	7.6%	0.94 [0.70, 1.28]	2006	
Donati 2007	8	68	20	67	1.3%	0.39 [0.19, 0.83]	2007	
*Smetkin 2009	1	20	4	20	0.2%	0.25 [0.03, 2.05]	2009	· · · · · · · · · · · · · · · · · · ·
Mayer 2010	6	30	15	30	1.1%	0.40 [0.18, 0.89]	2010	
Jhanji 2010	57	90	30	45	10.4%	0.95 [0.73, 1.23]	2010	-
Cecconi 2011	16	20	20	20	12.8%	0.80 [0.64, 1.02]	2011	-
*Brandstrup 2012	23	71	24	79	3.1%	1.07 [0.66, 1.71]	2012	
Challand 2012	10	89	13	90	1.2%	0.78 [0.36, 1.68]	2012	
*Goepfert 2013	34	50	42	50	13.7%	0.81 [0.65, 1.01]	2013	
*Salzwedel 2013	21	79	36	81	3.6%	0.60 [0.39, 0.93]	2013	
*Optimise 2014	134	368	158	365	21.8%	0.84 [0.70, 1.01]	2014	-
Total (95% CI)		1548		1476	100.0%	0.77 [0.71, 0.83]		♦
Total events	488		614					
Heterogeneity: Chi ² =	30.44, df	= 21	(P = 0.08)	8); $I^2 =$	31%			
Test for overall effect	: Z = 6.22	(P < 0	.00001)					U.UUS U.I I IU 200
								ravours experimental Favours control

Figure 1. CONSORT flow diagram.

	Pro	otocol		Control				Mean Difference		Mean Difference		
Study or Subgroup	Mean [Days]	SD [Days]	Total	Mean [Days]	SD [Days]	Total	Weight	IV, Fixed, 95% CI [Days]	Year	IV, Fixed, 95% CI [Days]		
Shoemaker 1988	19.3	2.4	28	23.7	3.43	60	1.9%	-4.40 [-5.64, -3.16]	1988	-		
Berlauk 1991	18.9	11.7	68	15.4	7.5	21	0.2%	3.50 [-0.75, 7.75]	1991	+		
Boyd 1993	16	19	53	12.5	8.25	54	0.1%	3.50 [-2.07, 9.07]	1993			
Mythen 1995	6.4	1.1	30	10.1	9.4	30	0.3%	-3.70 [-7.09, -0.31]	1995			
Bender 1997	12.5	10	51	12	9.5	53	0.2%	0.50 [-3.25, 4.25]	1997			
Sinclair 1997	11.25	1.25	20	27.75	12.75	20	0.1%	-16.50 [-22.11, -10.89]	1997	<u>←</u>		
Valentine 1998	13	2	60	13	2	60	5.8%	0.00 [-0.72, 0.72]	1998	+		
Wilson 1999	16	12	92	21.9	25.9	46	0.0%	-5.90 [-13.78, 1.98]	1999			
Lobo 2000	16	8	19	13.75	8.75	18	0.1%	2.25 [-3.16, 7.66]	2000			
Pölönen 2000	6	1.48	196	7	0.74	197	55.3%	-1.00 [-1.23, -0.77]	2000	-		
Bonazzi 2002	12	2	50	11	1.75	50	5.5%	1.00 [0.26, 1.74]	2002	-		
Conway 2002	12	24	26	11	5.75	28	0.0%	1.00 [-8.47, 10.47]	2002			
Gan 2002	5	3	50	7	3	50	2.1%	-2.00 [-3.18, -0.82]	2002			
Venn 2002	13.5	9.2	30	15.3	13.2	60	0.1%	-1.80 [-6.49, 2.89]	2002	— <u> </u>		
Sandham 2003	10	5.9	997	10	5.9	997	11.1%	0.00 [-0.52, 0.52]	2003	+		
Mckendry 2004	7	2.2	89	9	3.7	85	3.6%	-2.00 [-2.91, -1.09]	2004	-		
Pearse 2005	17.5	20.8	62	29.5	34.8	60	0.0%	-12.00 [-22.21, -1.79]	2005	·		
Wakeling 2005	10.98	5.95	67	13.13	7.44	67	0.6%	-2.15 [-4.43, 0.13]	2005			
Noblett 2006	8	4.96	51	12.4	9.41	52	0.4%	-4.40 [-7.30, -1.50]	2006	(
Donati 2007	11.3	3.8	68	13.4	6.1	67	1.0%	-2.10 [-3.82, -0.38]	2007			
Kapoor 2007	5.8	1.2	15	8.8	2.1	15	2.0%	-3.00 [-4.22, -1.78]	2007	-		
*Smetkin 2009	12	8.15	20	15	8.15	20	0.1%	-3.00 [-8.05, 2.05]	2009	-		
Jhanji 2010	20.8	13.3	90	18.5	11.5	45	0.2%	2.30 [-2.04, 6.64]	2010			
Mayer 2010	15	4.26	30	19	7.04	30	0.3%	-4.00 [-6.94, -1.06]	2010			
Van der Linden 2010	18.5	1.5	20	15	3.5	17	0.9%	3.50 [1.71, 5.29]	2010			
Cecconi 2011	10	0.74	20	10	1.48	20	5.6%	0.00 [-0.73, 0.73]	2011	*		
Pillai 2011	18	10.69	32	22	10.73	34	0.1%	-4.00 [-9.17, 1.17]	2011			
Challand 2012	8.8	4.37	89	6.7	6.3	90	1.2%	2.10 [0.51, 3.69]	2012			
Ramsingh 2013	5	4.5	18	7.5	5.5	20	0.3%	-2.50 [-5.68, 0.68]	2013			
*Zheng 2013	18	6.25	30	22	8	30	0.2%	-4.00 [-7.63, -0.37]	2013			
*Salzwedel 2013	11	8	79	10	11.8	81	0.3%	1.00 [-2.12, 4.12]	2013	- 		
*Optimise 2014	14.4	23	359	15.1	14.3	356	0.4%	-0.70 [-3.50, 2.10]	2014			
Total (95% CI)			2909			2833	100.0%	-0.80 [-0.98, -0.63]		•		
Heterogeneity: $Chi^2 = 2$	205.66, df = 3	1 (P < 0.000	01); I ²	= 85%						-20 -10 0 10 20		
lest for overall effect:	Z = 9.15 (P < C)	0.00001)								Favours protocol Favours control		

	Protoc	ol	Contr	ol		Risk Ratio			Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% Cl	Year		IV, Fixed	l, 95% CI	
Shoemaker 1988	1	28	18	60	1.1%	0.12 [0.02, 0.85]	1988		<u> </u>		
Berlauk 1991	1	68	2	21	0.8%	0.15 [0.01, 1.62]	1991				
Boyd 1993	3	53	12	54	2.9%	0.25 [0.08, 0.85]	1993				
Mythen 1995	0	30	1	30	0.4%	0.33 [0.01, 7.87]	1995		•		
Bender 1997	1	51	1	53	0.6%	1.04 [0.07, 16.18]	1997			-	-
Sinclair 1997	1	20	2	20	0.8%	0.50 [0.05, 5.08]	1997		· · · · ·		
Ziegler 1997	3	32	2	40	1.4%	1.88 [0.33, 10.55]	1997				
Ueno 1998	0	16	2	18	0.5%	0.22 [0.01, 4.34]	1998				
Valentine 1998	3	60	1	60	0.9%	3.00 [0.32, 28.03]	1998				
Wilson 1999	3	92	8	46	2.6%	0.19 [0.05, 0.67]	1999				
Pölönen 2000	2	196	6	197	1.7%	0.34 [0.07, 1.64]	2000				
Lobo 2000	3	19	6	18	2.8%	0.47 [0.14, 1.62]	2000		· · · · · ·	<u> </u>	
Bonazzi 2002	0	50	0	50		Not estimable	2002				
Conway 2002	0	29	1	28	0.4%	0.32 [0.01, 7.59]	2002				
Gan 2002	0	50	0	50		Not estimable	2002				
Venn 2002	3	30	8	60	2.7%	0.75 [0.21, 2.62]	2002				
Sandham 2003	78	997	77	997	46.6%	1.01 [0.75, 1.37]	2003		-	-	
Mckendry 2004	4	89	2	85	1.5%	1.91 [0.36, 10.16]	2004				
Pearse 2005	6	62	7	60	4.0%	0.83 [0.30, 2.33]	2005				
Wakeling 2005	0	67	0	67		Not estimable	2005				
Noblett 2006	0	51	1	52	0.4%	0.34 [0.01, 8.15]	2006		*		
Jerez 2001	16	181	21	209	11.1%	0.88 [0.47, 1.63]	2006				
Donati 2007	2	68	2	67	1.1%	0.99 [0.14, 6.79]	2007				
Kapoor 2007	0	15	0	15		Not estimable	2007				
Senagore 2009	1	42	0	22	0.4%	1.60 [0.07, 37.83]	2009				
*Smetkin 2009	0	20	0	20		Not estimable	2009				
Jhanji 2010	9	90	6	45	4.5%	0.75 [0.28, 1.98]	2010				
Mayer 2010	2	30	2	30	1.2%	1.00 [0.15, 6.64]	2010				
Van der Linden 2010	0	20	0	17		Not estimable	2010				
Cecconi 2011	0	20	0	20		Not estimable	2011				
Pillai 2011	1	32	0	34	0.4%	3.18 [0.13, 75.38]	2011			•	
Challand 2012	3	89	4	90	2.0%	0.76 [0.17, 3.29]	2012				
*Salzwedel 2013	0	79	2	81	0.5%	0.20 [0.01, 4.20]	2013	←			
*Optimise 2014	12	368	11	365	6.6%	1.08 [0.48, 2.42]	2014				
Total (95% CI)		3144		3081	100.0%	0.82 [0.67, 1.01]			•		
Total events	158		205								
Heterogeneity: Chi ² =	25.61, df	= 26 (P = 0.48)	; $I^2 = C$	1%			L 01	01	1 10	100
Test for overall effect:	Z = 1.87	(P=0.	06)					0.01	Favours Protocol	Favours control	100

	Protocol		Contr	Control Risk Ratio				Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% Cl
Shoemaker 1988	1	28	18	60	0.6%	0.12 [0.02, 0.85]	1988	· · · · · · · · · · · · · · · · · · ·
Berlauk 1991	1	68	2	21	0.4%	0.15 [0.01, 1.62]	1991	
Boyd 1993	3	53	12	54	1.6%	0.25 [0.08, 0.85]	1993	
Mythen 1995	0	30	1	30	0.2%	0.33 [0.01, 7.87]	1995	· · · · · · · · · · · · · · · · · · ·
Ziegler 1997	3	32	2	40	0.8%	1.88 [0.33, 10.55]	1997	· · · · · · · · · · · · · · · · · · ·
Bender 1997	1	51	1	53	0.3%	1.04 [0.07, 16.18]	1997	
Sinclair 1997	1	20	2	20	0.4%	0.50 [0.05, 5.08]	1997	· · · · · · · · · · · · · · · · · · ·
Valentine 1998	3	60	1	60	0.5%	3.00 [0.32, 28.03]	1998	
Ueno 1998	0	16	2	18	0.3%	0.22 [0.01, 4.34]	1998	
Wilson 1999	3	92	8	46	1.5%	0.19 [0.05, 0.67]	1999	
Pölönen 2000	4	196	9	197	1.8%	0.45 [0.14, 1.43]	2000	
Lobo 2000	3	19	9	18	1.9%	0.32 [0.10, 0.98]	2000	
Venn 2002	3	30	8	60	1.5%	0.75 [0.21, 2.62]	2002	
Bonazzi 2002	0	50	0	50		Not estimable	2002	
Conway 2002	0	29	1	28	0.2%	0.32 [0.01, 7.59]	2002	
Gan 2002	0	50	0	50		Not estimable	2002	
Sandham 2003	163	997	155	997	59.0%	1.05 [0.86, 1.29]	2003	+
Mckendry 2004	4	89	2	85	0.9%	1.91 [0.36, 10.16]	2004	
Wakeling 2005	0	67	1	67	0.2%	0.33 [0.01, 8.04]	2005	
Pearse 2005	7	62	9	60	2.8%	0.75 [0.30, 1.89]	2005	
Jerez 2001	16	181	21	209	6.3%	0.88 [0.47, 1.63]	2006	
Noblett 2006	0	51	1	52	0.2%	0.34 [0.01, 8.15]	2006	
Donati 2007	2	68	2	67	0.6%	0.99 [0.14, 6.79]	2007	
Kapoor 2007	0	15	0	15		Not estimable	2007	
Senagore 2009	1	42	0	22	0.2%	1.60 [0.07, 37.83]	2009	
*Smetkin 2009	0	20	0	20		Not estimable	2009	
Van der Linden 2010	0	20	0	17		Not estimable	2010	
Jhanji 2010	9	90	6	45	2.6%	0.75 [0.28, 1.98]	2010	
Mayer 2010	2	30	2	30	0.7%	1.00 [0.15, 6.64]	2010	
Cecconi 2011	0	20	0	20		Not estimable	2011	
Pillai 2011	1	32	0	34	0.2%	3.18 [0.13, 75.38]	2011	
Challand 2012	7	89	7	90	2.4%	1.01 [0.37, 2.76]	2012	
*Salzwedel 2013	0	79	2	81	0.3%	0.20 [0.01, 4.20]	2013	· · · · · · · · · · · · · · · · · · ·
*Optimise 2014	28	368	42	365	11.5%	0.66 [0.42, 1.04]	2014	
Total (95% CI)		3144		3081	100.0%	0.86 [0.74, 1.00]		•
Total events	266		326					
Heterogeneity: Chi ² =	31.90, df	= 27 ((P = 0.24)	; $ ^2 = 1$	L5%			
Test for overall effect:	Z = 1.92	(P = 0.1)	.05)					U.U.I U.I I IU IU Eavours Protocol Eavours control
								FAVOUIS FICTOCOL FAVOUIS CONTION