46 research outputs found

    Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in <i>Drosophila melanogaster</i>.

    Get PDF
    Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In &lt;i&gt;Drosophila melanogaster&lt;/i&gt; , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated &lt;i&gt;Drosophila&lt;/i&gt; populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. &lt;b&gt;IMPORTANCE&lt;/b&gt; Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and survival. Thus, despite its ancient evolutionary history, the reliance of animal hosts on their microbial partners can be surprisingly flexible and may be relaxed by short-term evolution

    Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests:a systematic review and meta-analysis

    Get PDF
    Background: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests’ clinical accuracy. Methods: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. Results: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer’s instructions and those conducted differently, or between point-of-care and lab-based testing. Conclusion: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.</p

    Pulmonary Recovery 12 Months after Non-Severe and Severe COVID-19: The Prospective Swiss COVID-19 Lung Study.

    Get PDF
    BACKGROUND Lung function impairment persists in some patients for months after acute coronavirus disease 2019 (COVID-19). Long-term lung function, radiological features, and their association remain to be clarified. OBJECTIVES We aimed to prospectively investigate lung function and radiological abnormalities over 12 months after severe and non-severe COVID-19. METHODS 584 patients were included in the Swiss COVID-19 lung study. We assessed lung function at 3, 6, and 12 months after acute COVID-19 and compared chest computed tomography (CT) imaging to lung functional abnormalities. RESULTS At 12 months, diffusion capacity for carbon monoxide (DLCOcorr) was lower after severe COVID-19 compared to non-severe COVID-19 (74.9% vs. 85.2% predicted, p < 0.001). Similarly, minimal oxygen saturation on 6-min walk test and total lung capacity were lower after severe COVID-19 (89.6% vs. 92.2%, p = 0.004, respectively, 88.2% vs. 95.1% predicted, p = 0.011). The difference for forced vital capacity (91.6% vs. 96.3% predicted, p = 0.082) was not statistically significant. Between 3 and 12 months, lung function improved in both groups and differences in DLCO between non-severe and severe COVID-19 patients decreased. In patients with chest CT scans at 12 months, we observed a correlation between radiological abnormalities and reduced lung function. While the overall extent of radiological abnormalities diminished over time, the frequency of mosaic attenuation and curvilinear patterns increased. CONCLUSIONS In this prospective cohort study, patients who had severe COVID-19 had diminished lung function over the first year compared to those after non-severe COVID-19, albeit with a greater extent of recovery in the severe disease group

    Host-Intestinal Microbiota Mutualism: “Learning on the Fly”

    Get PDF
    Given the complexity of the mammalian microbiota, there is a need for simple models to decipher the effector and regulatory mechanisms underlying host/microbiota mutualism. Approaches using Drosophila and its simple microbiota carry the potential to unravel the evolutionarily conserved mechanisms engaged in this association. Here, we review recent work carried out in this model, providing insights and exciting perspectives

    Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling.

    No full text
    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits

    Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing.

    Get PDF
    There is growing evidence that intestinal bacteria are important beneficial partners of their metazoan hosts. Recent observations suggest a strong link between commensal bacteria, host energy metabolism, and metabolic diseases such as diabetes and obesity. As a consequence, the gut microbiota is now considered a "host" factor that influences energy uptake. However, the impact of intestinal bacteria on other systemic physiological parameters still remains unclear. Here, we demonstrate that Drosophila microbiota promotes larval growth upon nutrient scarcity. We reveal that Lactobacillus plantarum, a commensal bacterium of the Drosophila intestine, is sufficient on its own to recapitulate the natural microbiota growth-promoting effect. L. plantarum exerts its benefit by acting genetically upstream of the TOR-dependent host nutrient sensing system controlling hormonal growth signaling. Our results indicate that the intestinal microbiota should also be envisaged as a factor that influences the systemic growth of its host

    Data from: Adaptation to chronic nutritional stress leads to reduced dependence on microbiota in Drosophila melanogaster

    No full text
    Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster, microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential

    Survival & developmental time

    No full text
    Time from egg to pupation and the proportion of larvae surviving to pupation. The values are means for each replicate bottle. The results are reported in Fig 1B,C in the paper

    Amylase activity

    No full text
    The raw data from the amylase activity assay (results presented in Fig. 3A). The amylase activity was analyzed as the log-transformed ratio of the rate of reaction k (defined in the Methods of the paper) to absorbance at 280 nm

    Weight & Growth Rate

    No full text
    Data on dry weight and growth rate reported in Fig. 5A and Fig. S2. Data for germ-free females of Control populations CTL5 and CTL6 are missing due an insufficient number of flies surviving to adulthood
    corecore