70 research outputs found

    Predicting the ultimate supremum of a stable L\'{e}vy process with no negative jumps

    Full text link
    Given a stable L\'{e}vy process X=(Xt)0≀t≀TX=(X_t)_{0\le t\le T} of index α∈(1,2)\alpha\in(1,2) with no negative jumps, and letting St=sup⁑0≀s≀tXsS_t=\sup_{0\le s\le t}X_s denote its running supremum for t∈[0,T]t\in [0,T], we consider the optimal prediction problem V=inf⁑0≀τ≀TE(STβˆ’XΟ„)p,V=\inf_{0\le\tau\le T}\mathsf{E}(S_T-X_{\tau})^p, where the infimum is taken over all stopping times Ο„\tau of XX, and the error parameter p∈(1,Ξ±)p\in(1,\alpha) is given and fixed. Reducing the optimal prediction problem to a fractional free-boundary problem of Riemann--Liouville type, and finding an explicit solution to the latter, we show that there exists Ξ±βˆ—βˆˆ(1,2)\alpha_*\in(1,2) (equal to 1.57 approximately) and a strictly increasing function pβˆ—:(Ξ±βˆ—,2)β†’(1,2)p_*:(\alpha_*,2)\rightarrow(1,2) satisfying pβˆ—(Ξ±βˆ—+)=1p_*(\alpha_*+)=1, pβˆ—(2βˆ’)=2p_*(2-)=2 and pβˆ—(Ξ±)<Ξ±p_*(\alpha)<\alpha for α∈(Ξ±βˆ—,2)\alpha\in(\alpha_*,2) such that for every α∈(Ξ±βˆ—,2)\alpha\in (\alpha_*,2) and p∈(1,pβˆ—(Ξ±))p\in(1,p_*(\alpha)) the following stopping time is optimal Ο„βˆ—=inf⁑{t∈[0,T]:Stβˆ’Xtβ‰₯zβˆ—(Tβˆ’t)1/Ξ±},\tau_*=\inf\{t\in[0,T]:S_t-X_t\ge z_*(T-t)^{1/\alpha}\}, where zβˆ—βˆˆ(0,∞)z_*\in(0,\infty) is the unique root to a transcendental equation (with parameters Ξ±\alpha and pp). Moreover, if either α∈(1,Ξ±βˆ—)\alpha\in(1,\alpha_*) or p∈(pβˆ—(Ξ±),Ξ±)p\in(p_*(\alpha),\alpha) then it is not optimal to stop at t∈[0,T)t\in[0,T) when Stβˆ’XtS_t-X_t is sufficiently large. The existence of the breakdown points Ξ±βˆ—\alpha_* and pβˆ—(Ξ±)p_*(\alpha) stands in sharp contrast with the Brownian motion case (formally corresponding to Ξ±=2\alpha=2), and the phenomenon itself may be attributed to the interplay between the jump structure (admitting a transition from lighter to heavier tails) and the individual preferences (represented by the error parameter pp).Comment: Published in at http://dx.doi.org/10.1214/10-AOP598 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The law of the supremum of a stable L\'{e}vy process with no negative jumps

    Get PDF
    Let X=(Xt)tβ‰₯0X=(X_t)_{t\ge0} be a stable L\'{e}vy process of index α∈(1,2)\alpha \in(1,2) with no negative jumps and let St=sup⁑0≀s≀tXsS_t=\sup_{0\le s\le t}X_s denote its running supremum for t>0t>0. We show that the density function ftf_t of StS_t can be characterized as the unique solution to a weakly singular Volterra integral equation of the first kind or, equivalently, as the unique solution to a first-order Riemann--Liouville fractional differential equation satisfying a boundary condition at zero. This yields an explicit series representation for ftf_t. Recalling the familiar relation between StS_t and the first entry time Ο„x\tau_x of XX into [x,∞)[x,\infty), this further translates into an explicit series representation for the density function of Ο„x\tau_x.Comment: Published in at http://dx.doi.org/10.1214/07-AOP376 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Investigation of the processes of the acoustic apparatus with the processing technological environment power interaction

    Get PDF
    Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° Ρ„Ρ–Π·ΠΈΡ‡Π½Π° ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° процСсів Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Π· ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π»ΡŒΠ½ΠΈΠΌ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ сСрСдовищСм Π·Π° ΡƒΠΌΠΎΠ²ΠΈ врахування Π·ΠΌΡ–Π½ΠΈ ΠΉΠΎΠ³ΠΎ Ρ€Π΅ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… властивостСй. Π•Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² Π²Ρ–Π΄ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΎ ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΠ³ΠΎ Π΅Ρ‚Π°ΠΏΡƒ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½Π° ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΈΠΌ тиском Ρ‚Π° ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŽ ΠΉΠΎΠ³ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ²ΡΡŽΠ΄ΠΆΠ΅Π½Π½Ρ. Π’Ρ€Π°Ρ…ΠΎΠ²Π°Π½Π° Π½ΠΈΠ·ΠΊΠ° силових Ρ‚Π° Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… характСристик Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² для Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ процСсу. На Π±Π°Π·Ρ– Ρ†ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² СнСргія процСсу Π°ΠΊΡƒΠΌΡƒΠ»ΡŽΡ”Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½Π½Ρ– Π±ΡƒΠ»ΡŒΠ±Π°ΡˆΠΊΠΈ Π²Ρ–Π΄ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Ρ€Ρ–Π²Π½ΠΎΠ²Π°ΠΆΠ΅Π½ΠΎΠ³ΠΎ Π΄ΠΎ максимального Ρ—Ρ— радіусу. ΠžΡΠ½ΠΎΠ²Ρƒ акумуляції ΡΠΊΠ»Π°Π΄Π°ΡŽΡ‚ΡŒ Ρ€ΠΎΠ·Ρ‚ΡΠ³ΡƒΠ²Π°Π»ΡŒΠ½Ρ– сили Ρƒ Ρ„Π°Π·Ρ– розрідТСння акустичної Ρ…Π²ΠΈΠ»Ρ–. ΠŸΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½Ρ– Π³Ρ€Π°Ρ„Ρ–ΠΊΠΈ залСТності ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ тиску Π²Ρ–Π΄ ΠΊΠ»ΡŽΡ‡ΠΎΠ²ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² процСсу Ρ‚Π° Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ– закономірності ΠΉΠΎΠ³ΠΎ Π·ΠΌΡ–Π½ΠΈ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Ρ– Ρ€Π΅ΠΆΠΈΠΌΠΈ Ρ‚Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ протікання Π΅Π½Π΅Ρ€Π³ΠΎΠ΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ акустичного процСсу ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… сСрСдовищ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– напрямки застосування Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ‚Π° Ρ—Ρ… подальший Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ.The physical picture of the processes of the apparatus with the processing technological environment interaction is determined, the change in its rheological properties were taken into account. The effectiveness of cavitation effects from the initial to the final processing stage is caused by the contact pressure and the speed of its propagation. A lot of power characteristics and parameters were considered for the effective implementation of the cavitation process. On the basis of these parameters, the energy of the process is accumulated by expanding the bubble from the initial balanced to its maximum radius. The basis of accumulation is the tensile forces in the phase of desiccation of the acoustic wave. The graphs of the contact pressure dependence on the key parameters of the process and the determination of the regularity of its change are made. The modes and parameters for leakage of energy-efficient acoustic process of different environments processing were proposed. The directions of of research results application and their further development were determined.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Π° физичСская ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° процСссов взаимодСйствия Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° с ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ тСхнологичСской срСдой ΠΏΡ€ΠΈ условии ΡƒΡ‡Π΅Ρ‚Π° измСнСния Π΅Π³ΠΎ рСологичСских свойств. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… эффСктов ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ этапа ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ обусловлСна ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ распространСния. Π£Ρ‡Ρ‚Π΅Π½ ряд силовых ΠΈ энСргСтичСских характСристик ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² для эффСктивной Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ процСсса. На Π±Π°Π·Π΅ этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² энСргия процСсса аккумулируСтся ΠΏΡ€ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠΈ ΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠΈ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ€Π°Π²Π½ΠΎΠ²Π΅ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎ максимального Π΅Π΅ радиуса. ΠžΡΠ½ΠΎΠ²Ρƒ аккумуляции ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Ρ€Π°ΡΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ силы Π² Ρ„Π°Π·Π΅ разрСТСния акустичСской Π²ΠΎΠ»Π½Ρ‹. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ давлСния ΠΎΡ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ закономСрности Π΅Π³ΠΎ измСнСния. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ Ρ€Π΅ΠΆΠΈΠΌΡ‹ ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ протСкания энСргоэффСктивного акустичСского процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… срСд. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ направлСния примСнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдований ΠΈ ΠΈΡ… дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅

    RESEARCH OF THE INFLUENCE OF LOW-FREQUENCY AND HIGH-FREQUENCY ACTIONS ON PROCESSING OF TECHNOLOGICAL ENVIRONMENTS

    Get PDF
    The processing of various vibrational low-frequency and cavitation high-frequency actions by their rheological properties is studied. A mathematical model of the motion of particles of a technological environment is determined taking into account the different nature of the dissipative forces. Two kinds of frictional forces are applied: dry at the first stage of changing the constituents of the mixture and viscous at the second, final stage of compaction of the mixture. The obtained analytical dependencies reveal the physical picture of the behavior of particles and the technological environment as a whole. The key stages of compaction to account for dry and viscous friction between the components of materials are described. It is revealed that processing at low frequencies reduces energy costs. Taking into account in vibroacoustic processes the contribution of higher harmonics greatly accelerates the process of cavitation. This is a fundamentally new result and the idea of the possibility of obtaining an effect for creating new materials. The obtained amplitudes and frequencies of oscillations of both low-frequency and high-frequency modes open a new direction in technologies for improving the quality of material processing. The main modes and parameters of vibrational and acoustic action for effective implementation of material processing processes are determined. The obtained results are applied at definition of rheological and technological parameters at various stages of processing of materials. The basic directions of quality improvement of processing environments are formulated

    The food habits of two congeneric rodent species in Point Pelee National Park, southwestern Ontario.

    Get PDF
    Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1975 .B385. Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.Sc.)--University of Windsor (Canada), 1975

    ДослідТСння процСсів Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Ρ– Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ сСрСдовища Π² ΡƒΠΌΠΎΠ²Π°Ρ… Ρ€ΠΎΠ·Π²ΠΈΠ½Π΅Π½ΠΎΡ– ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–Ρ—

    Get PDF
    Розглянуто ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ Π΄ΠΎ визначСння ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ‚Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² процСсу ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–Ρ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ сСрСдовища. ВиявлСно,Ρ‰ΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π΅ сСрСдовищС, ΠΏΡ–Π΄ΠΊΠΎΡ€Π΅Π½Π΅ ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½Ρ–ΠΉ ΠΎΠ±Ρ€ΠΎΠ±Ρ†Ρ–, прСдставляє собою ΠΏΡ€ΡƒΠΆΠ½ΠΎ-в’язко-пластичнС Ρ‚Ρ–Π»ΠΎ Ρ– ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ описанС модСллю Π‘Ρ–Π½Π³Π°ΠΌΠ°-Π¨Π²Π΅Π΄ΠΎΠ²Π°. Π Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° ідСя розгляду ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— Π·ΠΎΠ½ΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— систСми Β«ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΉ Π°ΠΏΠ°Ρ€Π°Ρ‚ – Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π΅ сСрСдовищС» Π½Π° основі визначСння Ρ€Ρ–Π²Π½ΠΎΠ²Π°Π³ΠΈ силового тиску Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Ρ– Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ, Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‡ΠΈΡ… Π² ΠΎΡ‚ΠΎΡ‡Π΅Π½Ρ– Π±ΡƒΠ»ΡŒΠ±Π°ΡˆΠΊΠΈ Π· розглядом ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ€Ρ–Π΄ΠΈΠ½ΠΈ, як систСми Π· Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ΠžΡΠΊΡ–Π»ΡŒΠΊΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½Π½ΡŽ ΠΏΡ–Π΄Π»ΡΠ³Π°ΡŽΡ‚ΡŒ Ρ€Ρ–Π·Π½Ρ– Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– сСрСдовища, які Π² процСсі ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–Ρ— ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ як в’язкі, Ρ‚Π°ΠΊ Ρ– пластичні властивості, розглянуто врахування Ρ€ΠΎΠ·ΡΡ–ΡŽΠ²Π°Π½Π½Ρ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π² ΠΊΠ°Π²Ρ–Ρ‚ΡƒΡŽΡ‡ΠΎΠΌΡƒ сСрСдовищі, Ρƒ Ρ‚ΠΎΠΌΡƒ числі Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ–ΠΉ Π·ΠΎΠ½Ρ– Π·Π° Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ Π·ΠΌΡ–Π½ΠΈ частотнонСзалСТних Ρ– частотнозалСТних ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² дисипації Π’Π°ΠΊΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄Π°Π² ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ·ΠΊΡ€ΠΈΡ‚ΠΈ Ρ„Ρ–Π·ΠΈΡ‡Π½Ρƒ ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ—, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– залСТності для встановлСння основних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π², Π² Ρ‚ΠΎΠΌΡƒ числі ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ тиску Ρ– Ρ…Π²ΠΈΠ»ΡŒΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΏΠΎΡ€Ρƒ Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ–ΠΉ Π·ΠΎΠ½Ρ– систСми Β«ΠΊΠ°Π²Ρ–Ρ‚Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΉ Π°ΠΏΠ°Ρ€Π°Ρ‚-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Π΅ сСрСдовищС». Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π²ΠΈΠ±ΠΈΡ€Π°Ρ‚ΠΈ значСння Π²Ρ…Ρ–Π΄Π½ΠΎΠ³ΠΎ ΠΎΠΏΠΎΡ€Ρƒ компСнсатора довТиною Ξ»/4 для отримання ΡƒΠΌΠΎΠ²ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ–, Π·Π° якою Ρ…Π²ΠΈΠ»ΡŒΠΎΠ²ΠΈΠΉ ΠΎΠΏΡ–Ρ€ Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Ρ– компСнсатора ΡƒΠ·Π³ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ–. Π ΠΎΠ·Ρ‚Π°ΡˆΠΎΠ²ΡƒΡŽΡ‡ΠΈ ΠΌΡ–ΠΆ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΡŽ Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Ρ– сСрСдовищСм Π΄ΠΎΠΏΠΎΠΌΡ–ΠΆΠ½ΠΈΠΉ ΡˆΠ°Ρ€ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π· Ρ‚Π°ΠΊΠΈΠΌ акустичним ΠΎΠΏΠΎΡ€ΠΎΠΌ, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ”Ρ‚ΡŒΡΡ Ρ€Ρ–Π²Π½Ρ–ΡΡ‚ΡŒ акустичного ΠΎΠΏΠΎΡ€Ρƒ Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Ρ– Π΅ΠΊΠ²Ρ–Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡ— Π»Ρ–Π½Ρ–Ρ— ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ–. Π’ΠΎΠ΄Ρ–, відбиття Π²Ρ–Π΄ ΠΎΠ±ΠΎΡ… Π³Ρ€Π°Π½ΠΈΡ†ΡŒ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎ встановлСного ΡˆΠ°Ρ€Ρƒ Ρ…Π²ΠΈΠ»Ρ– Π±ΡƒΠ΄ΡƒΡ‚ΡŒ Ρ€Ρ–Π²Π½Ρ– Π·Π° Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄ΠΎΡŽ, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‡ΠΈ Ρ‚Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρƒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρƒ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π½Π° протікання Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу.Approaches the definition and parameters of the model cavitation technology environment. Found that the technological environment, subdued cavitation processing, is a visco-elastic-plastic body and can be described by the model Binhama-Shvedova. Implemented is the idea to review the contact zone of interaction of the system "cavitation device – technological environment" by determining the balance of power system pressure and stress, surrounded by bubbles emerging in consideration of the fluid model as a system with distributed parameters. As the research is subject to various technological environments the cavitation is shown as viscous and plastic properties, considered taking into account the energy dissipation in cavitating environments, including the contact area on the laws change frequency independent and frequency dependent damping. This approach made it possible to reveal the physical nature of the interaction, receive analytical dependences to establish the basic parameters, including contact pressure and impedance in the contact area Β«cavitation machine systems – technological environmentΒ». Research results select the input impedance compensator length Ξ»/4 for maximum transfer conditions under which the impedance compensator system and coordination. When placing the device between the border and the environment auxiliary layer of material with the acoustic impedance ensured equality acoustic impedance device and transmission line equivalent. Then, a reflection of both boundary layer additionally installed waves are equal in amplitude, thus ensuring maximum transfer of energy to the flow of the process.РассмотрСны ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ тСхнологичСской срСды. ВыявлСно, Ρ‡Ρ‚ΠΎ тСхнологичСская срСда, подчинённая ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅, прСдставляСт собой ΡƒΠΏΡ€ΡƒΠ³ΠΎ-вязкопластичСскоС Ρ‚Π΅Π»ΠΎ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описано модСлью Π‘ΠΈΠ½Π³Π°ΠΌΠ°-Π¨Π²Π΅Π΄ΠΎΠ²Π°. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° идСя рассмотрСния ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ взаимодСйствия систСмы Β«ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ - тСхнологичСская срСда» Π½Π° основС опрСдСлСния равновСсия силового давлСния Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ напряТСний, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠ° с рассмотрСниСм ΠΌΠΎΠ΄Π΅Π»ΠΈ Тидкости, ΠΊΠ°ΠΊ систСмы с распрСдСлСнными ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ исслСдованию ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ тСхнологичСскиС срСды, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² процСссС ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ ΠΊΠ°ΠΊ вязкиС, Ρ‚Π°ΠΊ ΠΈ пластичСскиС свойства, рассмотрСны с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ рассСяния энСргии Π² ΠΊΠ°Π²ΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ срСдС, Π² Ρ‚ΠΎΠΌ числС Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ с Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ измСнСния частотнонСзависимых ΠΈ частотнозависимых коэффициСнтов диссипации Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π΄Π°Π» Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ взаимодСйствия, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ аналитичСскиС зависимости для установки основных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ давлСния ΠΈ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ сопротивлСния Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ систСмы Β«ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ – тСхнологичСская срСда». ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ значСния Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ сопротивлСния компСнсатора Π΄Π»ΠΈΠ½ΠΎΠΉ Ξ» / 4 для получСния условия максимальной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΅ сопротивлСниС Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ компСнсатора согласованы. Π Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ срСды Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ слоя ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° с Ρ‚Π°ΠΊΠΈΠΌ акустичСским сопротивлСниСм, обСспСчиваСт равСнство акустичСского сопротивлСния Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ эквивалСнтной Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ. Π’ΠΎΠ³Π΄Π°, ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡ‚ ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€Π°Π½ΠΈΡ† Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ установлСнного слоя Π²ΠΎΠ»Π½Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π΅, обСспСчивая Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρƒ энСргии Π½Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ тСхнологичСского процСсса

    Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results

    Full text link
    This paper describes a new publicly available codebase for modelling galaxy formation in a cosmological context, the "Semi-Analytic Galaxy Evolution" model, or SAGE for short. SAGE is a significant update to that used in Croton et al. (2006) and has been rebuilt to be modular and customisable. The model will run on any N-body simulation whose trees are organised in a supported format and contain a minimum set of basic halo properties. In this work we present the baryonic prescriptions implemented in SAGE to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling--radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.Comment: 15 pages, 9 figures, accepted for publication in ApJS. SAGE is a publicly available codebase for modelling galaxy formation in a cosmological context, available at https://github.com/darrencroton/sage Questions and comments can be sent to Darren Croton: [email protected]
    • …
    corecore