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Abstract

We propose a mathematical model for the TV game show “Who wants to be
a millionaire?” Using stochastic optimization methods, we obtain the optimal
strategy maximizing the player’s expected payoff. The model provides answers
to questions such as “What can the player expect to win?” and “What are
the chances of winning a million dollars?” This optimal stategy is presented in
simple form in an appendix.

1 Introduction

The TV game show “Who wants to be a millionaire?” (rules described below) is shown
in many countries. The objective of this paper is to provide a mathematical model
for this game and to compute the player’s optimal strategy. Modeling this game is
interesting for several reasons: the rules do not uniquely determine the mathematical
model; the game involves chance and decisions by the player under uncertainty, but
the randomness is not produced by a physical mechanism and important facts about
how the randomness is produced are not available; it is necessary to model the influ-
ence on the player’s strategy of external sources of information; much statistical data
that one would like to have is not available; and selecting an optimization criterion
for the player is part of the modeling problem.

In the face of these difficulties, the objective of a model is to provide a rational
strategy that helps the player decide which risks are worth taking. Since the game has
a combinatorial flavor, no advanced probability theory is needed and this problem and
the resulting model can be discussed in a first or second course in probability theory
or stochastic processes. The strategy that we propose is presented in a self-contained
appendix (see Section 7) and can easily be used even by non-mathematicians.

Rules of the game. The player is successively confronted with up to fifteen ques-
tions. Question number n has a face value fn, shown in Table 1 for the USA version
of the game. For each question, four answers a, b, c and d are proposed to the player.
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n fn wn

1 100 0
2 200 0
3 300 0
4 500 0
5 1000 0

n fn wn

6 2000 1000
7 4000 1000
8 8000 1000
9 16000 1000
10 32000 1000

n fn wn

11 64000 32000
12 125000 32000
13 250000 32000
14 500000 32000
15 1000000 32000

Table 1: The face values fn and the payoffs wn for an incorrect answer (USA version).

After seeing question n and the four possible answers, the player may choose to an-
swer, to use one of three “lifelines” (described below) or to quit without replying and
to receive the payoff fn−1 (f0 is set to 0). There is no time limit for answering.

If the player answers correctly, he moves to question n + 1. If the player answers
incorrectly, the game is over and the player receives the amount wn, also shown in
Table 1. The values of wn increase strictly at n = 5 and n = 10, which are called
“milestones.” If the player is not sure of the correct answer, he may use one of the
three lifelines. He may use more than one lifeline for the same question, but each
lifeline can be used only once during the entire game.

The three lifelines. One lifeline is entitled “50:50.” When the player asks to use
this lifeline, a computer eliminates two incorrect answers, leaving two answers to
choose from. A second lifeline is called “Phone-a-friend”: the host telephones a friend
selected by the player and the player has 30 seconds to communicate the question,
the four answers, and to obtain the reply from his friend. He is then free to use
the information supplied by his friend as he sees fit. The third lifeline is “Ask-the-

audience”: the host asks all members of the audience to enter their answer into the
computer. The computer tabulates the audience’s answers in a histogram, which is
shown to the player, and the player is free to use this information as he sees fit.

The need for a mathematical model. Stochastic optimization techniques can be
applied to this game, and there is a well-developed theory for this, expounded in
books such as [1], [2], [4] and [6]. But none of these are directly applicable, since a
mathematical model for the game is needed, whereas the theory begins by assuming
that such a model is given! The main objective of this paper is to create a suitable
model, which turns out to be a nice example of a stochastic control problem for
processes indexed by a (partially) ordered set (see [1]). Though we do choose various
numerical values in order to propose an actual strategy, the choices can be refined.
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2 The generic model

We let n = 1, . . . , 15 denote the number of the question that the player is contem-
plating, and n = 16 after the player has correctly answered all fifteen questions.

The player’s states of knowledge. The central parameters in the game are the likeli-
hoods that the player will be able to answer each question n. Let πn = (πn

a , πn
b , πn

c , πn
d )

be the player’s prior probability vector for question n, where the components are non-
negative and sum to 1, and πn

i , i = a, b, c, d, is the probability that the player assigns
to the event “the correct answer is i.”

Since a player will not be able to state his prior probabilities very precisely, we
shall consider a finite set K of possible states of knowledge for any given question.
Each state of knowledge corresponds to a particular prior probability vector.

When the player gives an incorrect answer, he has lost, and since his payoff depends
on how many of the milestones he has passed, we need three “lost” states, which we
denote L1, L2 and L3. We shall denote by Kn the set of possible states of the player
after answering n− 1 questions. Taking into account the “lost states” and a state W
(= win) for the (fortunate) player who has correctly answered all fifteen questions,
these are K1 = K,

Kn = K ∪ {L1}, n = 2, . . . , 6,
Kn = K ∪ {L1, L2}, n = 7, . . . , 11,
Kn = K ∪ {L1, L2, L3}, n = 12, . . . , 15,

and K16 = {W, L1, L2, L3}. We note that if the player gives an incorrect answer to
question n, then he moves to state (n + 1, Lm), with (n, m) ∈ Λ, where

Λ = ({1, . . . , 5} × {1}) ∪ ({6, . . . , 10} × {2}) ∪ ({11, . . . , 15} × {3}).

Stages in the game. In order to describe the player’s progression, we must keep
track of the number n and of the lifelines that remain available. Let Lifeline 1 be the
50:50 lifeline, Lifeline 2 be “Phone-a-friend,” and Lifeline 3 be “Ask-the-audience.”

Since each lifeline can be used only once, we set S = {0, 1}3, and for s =
(s1, s2, s3) ∈ S, sm will denote the number of times lifeline m has been used, m =
1, 2, 3. The three lifelines are symbolized by `1, `2 and `3, where

`1 = (1, 0, 0), `2 = (0, 1, 0), `3 = (0, 0, 1).

Each s ∈ S represents the lifelines still available: for instance, s = (1, 1, 0) if only
Lifeline 3 is still available. For s = (s1, s2, s3) and t = (t1, t2, t3) in S, define

s ∨ t = (max(s1, t1), max(s2, t2), max(s3, t3)), s − t = (s1 − t1, s2 − t2, s3 − t3),

and set D(s) = {s∨`1, s∨`2, s∨`3}\{s}. For σ ∈ D(s), σ−s ∈ {`1, `2, `3} represents
the lifeline that was used to pass from s to σ. For s 6= (1, 1, 1), the set D(s) represents
the possible lifeline situation, after using one of the remaining available lifelines.



R.C. Dalang and V. Bernyk 4

At any stage in the game, the progression of the player in the game is fully described

by the couple (n, s) ∈ P
def
= {1, . . . , 16} × S. These are the stages in the game.

Markovian nature of the game. At the stage (n, s), the status of the player is a
random variable Xn,s with values in Kn. The event {Xn,s = k} occurs if the player’s
state of knowledge concerning question n is k, and {Xn,s = Lm} occurs if the player
previously gave an incorrect answer. Before question n is displayed, we do not know
what the player’s status will be at that or future stages of the game.

At a given stage (n, s) in the game, once we know the status Xn,s, the previous
statuses, such as the degree of knowledge in previous questions, are no longer relevant.
The player can either answer and move to a new stage (n + 1, s) with a new status
Xn+1,s, or he can use a lifeline and move to a new stage (n, σ), with σ ∈ D(s), and a
new status Xn,σ. The lifeline he just used was σ−s. In order to describe the evolution
of the player’s status, we need the transition probabilites

pn(j, k) = P{Xn+1,s = k | Xn,s = j}, j ∈ Kn, k ∈ Kn+1,

and, for s ∈ S such that s ∨ `m ∈ D(s),

pn,`m
(j, k) = P{Xn,s∨`m

= k | Xn,s = j}, j, k ∈ Kn.

We assume for the moment that we know these transition probabilities. In Sections
3 and 4, we shall explain how we determine them.

Optimization. For (n, s) ∈ P and k ∈ Kn, the payoff to the player if he quits the
game at stage (n, s) does not depend on s, so we denote it f(n, k). According to the
rules of the game, we set f(n, k) = fn−1, k = 0, . . . , 4. For n = 2, . . . , 16, f(n, L1) =
w1, for n = 7, . . . , 16, f(n, L2) = w6, and for n = 12, . . . , 16, f(n, L3) = w11, where
w1, w6 and w11 are as in Table 1. Finally, f(16, W ) = f15 = 1000000.

We shall assume that the player seeks to maximize the expected utility of the
payoff, for a given utility function u : RI + → RI (for a reasonable choice of this
function, see Section 5), and we let g(n, k) = u(f(n, k)).

For (n, s) ∈ P and k ∈ Kn, let u∗(n, s, k) be the expected utility of a player
currently at stage (n, s) and in status k, who proceeds optimally from this stage on.
Bellman’s equation of dynamic programming (see e.g. [1, Sections 3.6 and 9.2]) for
u∗(·, ·, ·) is

u∗(n, s, j) = max

(

g(n, j), C(n, s, j), max
σ∈D(s)

L(n, s, σ, j)

)

, (1)

where

C(n, s, j) =
∑

k∈Kn+1

pn(j, k)u∗(n + 1, s, k), L(n, s, σ, j) =
4

∑

k=0

pn,σ−s(j, k)u∗(n, σ, k).
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The values of u∗ are now computed by backward induction, since u∗(16, s, W ) =
g(16, W ) (= u(106)), for all s ∈ S, and for m = 1, 2, 3, if Lm ∈ Kn, then u∗(n, s, Lm) =
g(n, Lm), for n = 2, . . . , 16, s ∈ S.

With these values of u∗(·, ·, ·), we use (1) successively for n = 15, 14, . . . , 2, 1, to
compute u∗(n, s, j), first for s = (1, 1, 1) (D(s) = ∅), then for s = (0, 1, 1), s =
(1, 0, 1) and s = (1, 1, 0) (D(s) = {(1, 1, 1)}), then for s = (0, 0, 1), s = (0, 1, 0) and
s = (1, 0, 0) (two lifelines available), and finally for s = (0, 0, 0) (all lifelines available).

Description of the optimal strategy. Once the u∗(n, s, k) have been computed, the
optimal strategy for the player is as follows: when at stage (n, s) with knowledge
status j, determine which of the three quantities on the right-hand side of (1) is
equal to u∗(n, s, j). If this is g(n, j), then quit and receive the payoff f(n, j). If this
is C(n, s, j), then answer the question. If this is maxσ∈D(s) L(n, s, σ, j), then pick m
such that σ = s ∨ `m achieves this maximum, and use lifeline m. In the last two
cases, the player moves respectively to a new stage (n + 1, s) or (n, σ), and repeats
the procedure.

3 Adjusting the model to the game

We now describe how to determine the transition probabilities pn(j, k) from more
basic quantities. Let qn(k) be the likelihood that the player will have a particular
state k ∈ K of knowledge for question n, and let rk be the probability that the player’s
answer is correct if his state of knowledge is k. Then pn(j, k) can be easily expressed
from the qn(k) and rk, if we assume that giving a correct answer to question n is
independent of the player’s state of knowledge for question n + 1: for j ∈ K,

pn(j, k) = rj qn+1(k), k ∈ K, n = 1, . . . , 14,

pn(j, Lm) =

{

1 − rj if (n, m) ∈ Λ,
0 otherwise,

p15(j, W ) = rj .
(2)

Note that if the player gives an incorrect answer when at stage (n, s), then he moves
to state Lm ∈ Kn+1 at stage (n + 1, s), where (n, m) ∈ Λ. For completeness, we set
pn(Lm, Lm) = 1 if Lm ∈ Kn, n = 2, . . . , 15.

Specifying the states of knowledge and numerical choices of parameters. In order
to propose a specific strategy, we need to specify the set K and to select values for
the parameters qn(k) and rj . This requires prior (statistical) information about the
game. There are, however, two distinct situations.

Imagine that a player learns with only a few days’ advance notice that he will
be on the show (this is generally the case). At that point, he might like to create
a rational strategy, but he will not have time to gather much additional data by
watching further shows, and he will have to use only the information that he already
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has. He can go out and buy the game box version of the show, and use the 100 or so
questions for each face value to create some statistical data to include in the model.

We shall consider this situation. We decided to limit ourselves to a few states in
K, and after examining the questions from the game box version, found that we were
almost always in one of the following five basic states of knowledge:

State 0: the player definitely knows the answer (zero uncertainty).
State 1: the player is confident, but not certain, that he knows the correct answer.
State 2: the player hesitates between 2 answers (the other two are unlikely).
State 3: Two answers were just eliminated by the computer by using the 50:50

lifeline, but the player still hesitates between the two remaining answers.
State 4: the player has no idea of the answer (hesitates between all 4 answers).

In terms of prior probability vectors, we found that it was consistent with our
observations from the game box version to associate to state k a permutation of the
prior probability vectors shown in Table 2. Counting the distinct permutations of
these vectors, K should contain 21 elements, but since the permutations of a given
vector all play the same role, we simply set K = {0, 1, 2, 3, 4}.

k Probability vector

0 (1, 0, 0, 0)
1 (4/5, 1/15, 1/15, 1/15)
2 (2/5, 2/5, 1/10, 1/10)
3 (1/2, 1/2, 0, 0)
4 (1/4, 1/4, 1/4, 1/4)

Table 2: For each state k of knowledge, the player’s prior probabilities are a permutation
of those that are shown.

Our selection of the qn(k) must reflect the fact that the questions become more
and more difficult. Since there are two milestones, we divide the fifteen questions into
three groups and set, for k ∈ {0, . . . , 4}, qn(k) = ρm(k), where (n, m) ∈ Λ.

The numerical values for the ρm(k) resulting from our study of the game box
version are shown in Table 3. Since state k = 3 can only be reached by using the
50:50 lifeline, we have set ρm(3) = 0, m = 1, 2, 3.

According to our choice of states, we should set r0 = 1, r1 = 4/5, r2 = 2/5,
r3 = 1/2, r4 = 1/4. The numerical values of the matrix (pn(j, k), j = 0, . . . , 4, k =
0, . . . , 4) are now easily computed using the formulas in (2).

Another possible statistical situation. A distinct statistical situation would be that
of a player who prepares for the game for many months. This player can gather
lots of data, which should lead to more refined estimates of the various parameters.
However, since the randomness in the game is not produced by a physical mechanism,
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k = 0 k = 1 k = 2 k = 3 k = 4

ρ1(k) 0.5 0.4 0.05 0 0.05
ρ2(k) 0.2 0.3 0.2 0 0.3
ρ3(k) 0.2 0.2 0.1 0 0.5

Table 3: Our choice for the probabilities that the player’s state of knowledge for a question
is k, for the three groups of questions.

there is no guarantee that the data will be consistent over time: past data may not
be so useful for future games. While much data about the game may be recorded
somewhere, the (apparently unavailable) data we would need would be a record of
which state k ∈ K the player was in for each question, and how well he did when
in each state. We decided not to seek such data, with the idea that any particular
player can tailor the parameters of our model to his particular situation and abilities.

4 Modeling the lifelines

We now turn to the transition probabilites pn,`m
(j, k). Each lifeline has its own specific

characteristics. We begin with the 50:50 lifeline.

4.1 The 50:50 lifeline

The game is designed so that the probability that the computer will eliminate any
one of the three possible pairs of incorrect answers is 1/3. When in state k, the
player has assigned prior probabilites to each event Ca = “the correct answer is a,” so
the total probability formula gives us the probability of events Eb,c = “the computer
eliminates answers b and c.” However, our model does not yet determine the new
state to which the player moves after two particular incorrect answers have been
eliminated. For this, we use Bayes’ formula to determine the posterior probability
that each remaining answer is correct, and then we select the player’s possible new
state(s) in such a way that this posterior probability becomes the player’s probability
of giving a correct answer.

For instance, if the player is in state 2, assume that the player has assigned prob-
abilities 2

5
, 2

5
, 1

10
, 1

10
to the respective events “a, b, c, d, is the correct answer.”

There are three distinct possibilities: Ea,b occurs, Ec,d occurs, or one of {a, b} and
one of {c, d} are eliminated. These events have respective probabilities 1

15
, 4

15
, and 2

3
;

indeed, the first event has probability

P (Ea,b) = P (Ea,b | Cc) P (Cc) + P (Ea,b | Cd) P (Cd)

=
1

3
· πn

c +
1

3
· πn

d =
1

3
· 1

10
+

1

3
· 1

10
=

1

15
,
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and the two others are computed in a similar way. Using Bayes’ formula, we can
compute the probability that either of the remaining answers is correct. For instance,

P (Ca | Eb,d) =
P (Eb,d | Ca) · P (Ca)

P (Eb,d)
=

1
3
· 2

5
1
6

=
4

5
,

and so the player’s state is best represented by state 1 in this case. If Ea,b or Ec,d

occurs, then the player’s state is best represented by state 3. Therefore, pn,`1(2, 1) =
4P (Eb,d) = 2/3, and pn,`1(2, 3) = P (Ea,b ∪ Ec,d) = 1/3.

If the player is in state 1, assume that the player has assigned probability 4
5

to
answer a and 1

15
to each of answers b, c and d. There are two distinct possibilities:

either a is eliminated, or it is not. The first has probability 2
15

and the second 13
15

.
If a is eliminated, we shall assume that the player’s new state of knowledge is 3.

If a is not eliminated, then we note that

P (Ca | Eb,c) =
P (Eb,c | Ca) · P (Ca)

P (Eb,c)
=

1
3
· 4

5
13
45

=
12

13
' 0.92,

which is substantially higher than the probability 4
5

assigned to state 1. Being some-
what conservative, we consider that the player’s new state of knowledge can be 0 or
1, with respective probabilities 6

15
and 7

15
.

The transition probabilites associated with the 50:50 lifeline are summarized in
Table 4. Notice that they do not depend on n.

k = 0 k = 1 k = 2 k = 3 k = 4

pn,`1(0, k) 1 0 0 0 0
pn,`1(1, k) 6/15 7/15 0 2/15 0
pn,`1(2, k) 0 2/3 0 1/3 0
pn,`1(3, k) 0 0 0 1 0
pn,`1(4, k) 0 0 0 1 0

Table 4: Transition probabilites when the 50:50 lifeline is used.

4.2 The lifeline “Phone-a-friend”

For this lifeline, there are two clearly distinct issues: the friend’s state of knowledge
of the answer, and how his state of knowledge influences our own state of knowledge.

We address these two issues in turn. First of all, we assume that the possible states
of knowledge for the friend are the same as for the player, and we let Fn(k) be the
probability that the friend’s state of knowledge for question n is k.

Consider now the issue of how the friend’s state of knowledge affects our own state
of knowledge. Let I(j, i, k) denote the probability, given the player’s state j and the
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friend’s state i, that after using the lifeline “Phone-a-Friend”, the player’s new state
is k. The pn,`2(j, k), j, k = 0, . . . , 4, are now easily computed:

pn,`2(j, k) =
4

∑

i=0

Fn(i) I(j, i, k). (3)

We now examine how to determine the values of the I(i, j, k). Clearly, the player’s
new state of knowlege could just as well be the friend’s new state of knowledge, so
we should have I(j, i, k) = I(i, j, k), and therefore we only consider the case j ≥ i.

If the player’s state is j = 4, and the friend’s state is i, then the player’s new state
k of knowledge is certainly k = i, so I(4, i, i) = 1, i = 0, . . . , 4.

If the player’s state of knowledge is j = 3, meaning he has just used the 50:50
lifeline, and the friend’s state is also i = 3, then the player remains in state 3, so
I(3, 3, 3) = 1 and I(3, 3, k) = 0 for k 6= 3. If the friend’s state is i = 2, 1 or 0, then
we assume that the interaction between friend and computer is the same as between
player and computer when the 50:50 lifeline was used, so we set

I(3, i, k) = pn,`1(i, k), i = 2, 1, 0, k = 0, . . . , 4.

Dependence between player’s and the friend’s selections. Bringing together two
knowledgeable people should enhance each one’s state of knowledge. One can check
that this property does not hold under the assumption that given their states of
knowledge, the answers they select are independent. Since player and friend derive
their knowledge from the same sources (school, books, etc.), independence of selec-
tions is in fact not a natural assumption. We shall assume that the friend’s and
player’s states of knowledge are independent, but given their states of knowledge, the
answers they think correct are not independent.

To formalize this, when player and friend are in states 1 or 2, we shall assume that
the friend’s preferred answer(s) are selected with the same probabilities as drawing
(one or two) tickets labelled a, b, c, d, without replacement from an urn, using the
prior probabilities πn

a , . . . , πn
d assigned by the player.

If player and friend are both in state 1, and if they have the same preferred answer,
then the player’s confidence in the correct answer increases, and decreases otherwise.
According to the above rule, the former occurs with probability r1: in this case, we
assume that the player moves to state 0, and otherwise, that he moves to state 2.
Therefore, I(1, 1, 0) = r1 and I(1, 1, 2) = 1 − r1.

If the player’s state is j = 2, and if the friend is in state 1, then either the friend’s
selection is contained in the player’s two selections (with probability 4/5), or not.
In the first case, we assume that the player will go with his friend’s suggestion and
move to state 1. In the second case, we assume that this brings some confusion to
the player and so his new state is 4. Therefore, I(2, 1, 1) = 4

5
and I(2, 1, 4) = 1

5
.

If both player and friend are in state 2, and their preferred pairs are identical,
then we assume that the player’s state does not change. If their preferred pairs
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i = 0 i = 1 i = 2 i = 3 i = 4

j = 0 0 (1) 0 (1) 0 (1) 0 (1)

j = 1 0 (1) 0 (4/5) ; 2 (1/5) 1 (4/5); 4 (1/5) 1 (1)

j = 2 0 (1) 1 (4/5) ; 4 (1/5) 1 (20/45); 2 (24/45); 4 (1/45) 2 (1)

j = 3 0 (1) 0 (6/15); 1 (7/15); 3 (2/15) 1 (2/3); 3 (1/3) 3 (1) 3 (1)

j = 4 0 (1) 1 (1) 2 (1) 4 (1)

Table 5: The box at row j, column i, contains the values of k for which I(j, i, k) > 0, and
next to each k, the value of I(j, i, k) in parentheses.

are disjoint, then we assume that the player moves to state 4, and if they have one
answer in common, then we assume that the player will give his preference to the one
answer both he and his friend consider likely, and so his new state of knowledge is 1.
Computing the respective probabilities of these events leads to

I(2, 2, 1) = 20/45, I(2, 2, 2) = 24/45, I(2, 2, 4) = 1/45.

Finally, for all the triples (j, i, k) that have not been explicitely discussed above,
we set I(j, i, k) = 0.

Numerical values. The friend has been chosen because he is knowledgeable, and so
we could consider that he is more likely to know the correct answer than the player.
On the other hand, only 30 seconds are allowed for communication. Rather often,
this time limit is significant. In the end, we have chosen simply to set Fn(k) = qn(k),
that is, friend and player have the same probabilites of being in each state.

The numerical values of I(j, i, k), computed according to the formulas described
above, are summarized in Table 5. The numerical values of (pn,`2(j, k), j = 0, . . . , 4, k =
0, . . . , 4) are now easily computed using (3).

4.3 The lifeline “Ask-the-audience”

Typical audience responses are shown in Figure 1. For instance, in Case 1, 70% of
the audience says that a is the correct answer.

How does the player use the histogram of audience responses? We assume that
the audience aims to help the player (though this seems not always to be the case in
at least one country, Russia). We also assume that the player determines from the
histogram that the audience’s state of knowledge is one of the states 0, . . . , 4. This
should generally be easy to do, though some borderline cases may arise.

With this assumption, we can treat this lifeline in the same way as the “Phone-a-
Friend” lifeline. Let An(k) be the probability that the audience’s state of knowledge
for question n is k. The transition probabilities pn,`3(j, k) are now computed as in
(3), with Fn(i) replaced by An(i).
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aa dcb b dcbadc

42%10% 5%15%70% 5%48% 22%28%22%28%5%

Case 1 Case 2 Case 3

Figure 1: Three typical histograms of audience responses.

Numerical values. Since members of the audience can talk to their neighbors, and
since they are not under the same stress as the player, they should be more likely
to know the correct answer, at least during the early stages of the game. It seems
reasonable to set An(k) = αm(k) if (n, m) ∈ Λ, with our choice for the αm(k) shown
in Table 6.

k = 0 k = 1 k = 2 k = 3 k = 4

α1(k) 0.6 0.3 0.05 0 0.05
α2(k) 0.4 0.3 0.2 0 0.1
α3(k) 0.2 0.2 0.1 0 0.5

Table 6: Our choice for the probabilities that the audience’s state of knowledge for a
question is k, for the three groups of questions.

Using the numerical values of I(j, i, k) shown in Table 5, we easily obtain the
numerical values of the matrix (pn,`3(j, k), j = 0, . . . , 4, k = 0, . . . , 4).

5 Modeling the player’s risk tolerance

Recall, as in [5], that a “utility function” is any function u : RI + → RI that is
continuous, non-decreasing and concave. A standard class of utility functions are the
power functions u(x) = xp, where p < 1 (1 − p is known as the Arrow-Pratt risk-
aversion index, as in [5, p.20]). A value of 1− p near 0 is to be used for a player who
has a high risk tolerance, while a large value of 1 − p should be used for a cautious
player.

What is a reasonable choice for p? The most extreme risks that confront the
player occur at questions 10 and 15: if the player quits, he receives the payoff x = f9

(respectively x = f14). If he answers incorrectly, his payoff is w6 (respectively w11),
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which is approximately x/15. If he answers correctly, then his payoff will be at least
w11 (respectively f15), which equals 2x. In short, if he is uncertain about the answer,
he can quit the game with the payoff x, or answer and receive either x/15 or 2x.

Consider the following alternative: (A) you are given x =$500000; or (B) a fair
coin is tossed and you receive $32000 if it falls on heads, and $1000000 if it falls on
tails. Which of these alternatives would you prefer? Even though the expected reward
is slightly higher in the second case, most people prefer (A). If the fixed amount is
lowered to $400000, most people still prefer (A). When this amount is set to $300000,
then most people feel that (B) is more attractive. We can set the breakeven point,
at which both alternatives are equally attractive, at $350000 = 7

10
x.

Based on these considerations, we seek a utility function u(x) = xp such that

(7x/10)p = 1
2
(x/15)p + 1

2
(2x)p.

Dividing both sides of this equation by xp, one easily checks that this equality is
satisfied to the third decimal place for p = 1

2
, so that the utility function u(x) =

√
x

does a satisfactory job of capturing a typical level of risk tolerance. We shall use this
particular utility function to compute our optimal strategy.

6 The optimal stragegy

We now have in hand all the numerical quantities needed to compute the optimal
strategy according to the procedure described in Section 2. Since there are 15 ques-
tions, 5 states of knowledge and 8 configurations for the availability of lifelines, there
are 600 values of u∗(n, s, j) to compute, which could, at least in principle, be computed
by hand (though we used Mathematica and Excel, which gave identical results).

The optimal strategy that results is shown in the Appendix (Section 7). Some
comments on this strategy are in order.

“Essential” uniqueness. The optimal strategy is not unique. For instance, if we
are at stage (15, s), with s 6= (1, 1, 1) and X15,s = 0, then we may either answer
immediately, or first use one or more lifelines. Additional non-uniqueness comes
from the fact that the lifelines `2 and `3 are equivalent for questions 11 to 15 (though
priority should be given to `3 in this case: see [3, Chapter 9]). At stage (15, (0, 1, 0), 4),
it turns out that it is optimal to use either lifeline `1 or `3, and at stage (15, (0, 0, 1), 4),
it is optimal to use either lifeline `1 or `2. Except for these cases, the strategy always
prescribes exactly one optimal action, which is indicated in Figure 3.

Relative values of the lifelines. The “most powerful” lifeline is Ask-the-audience, as
can be seen from the inequality u∗(1, (1, 1, 0), j) > u∗(1, s, j), for s ∈ {(1, 0, 1), (0, 1, 1)}
and all j ∈ {0, . . . , 4}, which comes out of the computations and means that if ini-
tially we are allowed only one lifeline, then we should select Ask-the-audience. For
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n = 1, . . . , 5, if `2 and `3 are available, then our strategy prefers to use the weaker
lifeline Phone-a-friend, and to save Ask-the-audience for later.

For n = 6, 7, 8, if all three lifelines are available and we are in state 2, then it is
preferable to use 50:50 and save the other two lifelines for later, but if we are in state
4, then 50:50 is not powerful enough and we should use Ask-the-audience.

In state 1, it is worth answering without using a lifeline if n ≤ 12. In states 2 or 4,
it is optimal to use a lifeline if one is available, unless n = 6 and s = (1, 0, 1). In state
4, if no lifeline is available, then we should quit unless we have just passed a milestone
(n = 1, 6, 7 and 11). In state 2, if no lifeline is available, we can risk answering even
if the milestones are farther away (n = 1–4, 6–8 and 11–12).

Estimates of the expected reward. If we do use the strategy described above, what
will be our payoff R, on average? The expected utility V of our payoff is

V =

4
∑

k=0

q1(k)u∗(1, (0, 0, 0), k),

the numerical value of which is V = 63.34, so an estimate of our expected payoff
is V 2 ' 4012 dollars. By Jensen’s inequality E(Y ) ≥ (E(

√
Y ))2, valid for all non-

negative random variables Y , this is a (rather severe) underestimate.
We can get an upper bound on R by setting p = 1, which means that we set

u(x) = x, and again go through the calculation of the u∗(n, s, j). This leads to the
strategy that maximizes the expected payoff. The value of the expected payoff under
this new strategy is $19252.92. The optimal strategy for this second optimization
criterion is not so different from the previous one, so this upper bound is probably
relatively close to the expected payoff of the strategy presented in Figure 3.

When the player has correctly answered n − 1 questions and has not yet seen
question n, we can use the quantity

4
∑

k=0

qn(k) u∗(n, s, k) (4)

(computed with p = 1) to estimate the expected payoff if we proceed optimally from
that stage on, and the availability of lifelines is described by s ∈ S. These quantities
(rounded to the nearest integer) are shown in Table 7 for n = 1, 6, 11. It is interesting
to note that even after correctly answering the first ten questions, the expected payoff
is still far below a million dollars ($230627 if all three lifelines are still available, and
$84585 if all lifelines have been used).

The chances of winning a million. We can estimate this probability by seeking to
“maximize the probability that we reach state (16, W ).” For this, set f(16, W ) = 1
and f(n, k) = 0 for all other values of n and k, and then again calculate the u∗(n, s, j).
With these new values, formula (4) gives the probability, given that the player has



R.C. Dalang and V. Bernyk 14

I II III IV V VI VII VIII
n $
1 100
6 2000

11 64000

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,0) (1,1,1)
19252 12347 11609 10319 5537 6319 7139 3257
37927 24653 24232 21063 12072 13041 15120 7233

230627 174533 172597 172597 121571 124859 124859 84585

Table 7: Upper bounds on the expected payoff under the optimal strategy. In row n, for
each value of s, the entry is an estimate of the player’s expected payoff given that he has
correctly answered n − 1 questions and has not yet seen question n.

correctly answered n − 1 questions and has not yet seen question n, that with this
new strategy, he will reach state (16, W ). This is an upper bound for the probability
that he will win a million dollars if he uses the strategy presented in Figure 3.

For n = 1, 6, 11, these probabilities are shown in Table 8. In particular, a player
who starts with three lifelines has a chance of about 1/100 of winning a million dollars.

I II III IV V VI VII VIII
n $
1 100
6 2000

11 64000

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,0) (1,1,1)
0.0111 0.0065 0.0060 0.0053 0.0026 0.0029 0.0033 0.0013
0.0227 0.0134 0.0128 0.0112 0.0056 0.0063 0.0072 0.0030
0.1771 0.1180 0.1197 0.1197 0.0718 0.0735 0.0735 0.0399

Table 8: Upper bounds on the probability of winning a million. In row n, for each s, the
entry is an estimate of the conditional probability that the player will win a million dollars,
given that he has correctly answered n − 1 questions and has not yet seen question n.
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7 Appendix. “Who wants to be a millionaire?”: the optimal strategy

The eight tables in Figure 3, numbered from I to VIII, indicate the optimal manner of using
the lifelines and the best time to quit the game.

The symbols. The symbols R, Q, and the three lifeline symbols shown in Figure 2 respec-
tively correspond to the actions “Answer the question,” “Quit the game,” “use the 50:50
lifeline,” “use the lifeline Phone-a-Friend,” and “use the lifeline Ask-the-Audience.”

�����

Figure 2: The symbols for the three lifelines

The numbers 0, 1, 2, 3, and 4 on the second line of each of the eight tables represent
the player’s degree of uncertainty about the correct answer. The number 0 is for the case
where the player knows the correct answer (zero uncertainty), the number 1 for the case
where the player is quite confident, but not certain, that he knows the correct answer, the
number 2 for the case where the player hesitates between two of the answers and considers
the other two as unlikely, the number 3 is for the case where the player has just used the
50:50 lifeline and still does not know which of the two remaining answers is correct, and the
number 4 is for the case where the player has no idea of the correct answer.

How to use the tables. At each stage in the game, the player selects the table that corre-
sponds to the lifelines that are still available (the lifelines whose symbols are crossed out
are those that are no longer available). He then selects the column in that table which
corresponds to his degree of uncertainty about the answer. Finally, he selects the row in
that table labelled with the number (and dollar value) of the question. Then he should
carry out the action indicated in the table at the intersection of that column and row.

An example. If the player has not yet used any of the lifelines, is currently at question 6
and is hesitating between two answers, then table I tells him to use the 50:50 lifeline. Once
he has done this and this lifeline is no longer available, he moves to table II. If he is now
confident that he knows the answer, then column 1 of table II tells him to give the answer.
On the other hand, if he is still hesitating between the two remaining answers, then column
3 of table II tells him to use the lifeline Phone-a-friend. In this case, his only remaining
lifeline is Ask-the-audience, so he moves to table VII, and so on.

A comment. The most important factor in the game is the player’s knowledge: a well-
informed player will generally do better than one who is less-informed, and the strategy for
using the lifelines is at a second level of importance. The player should consider that the
tables are designed to help him decide when to use each lifeline and when to quit. Since
they have been computed for an “average player,” it may be reasonable in some cases to
act differently from what the tables indicate.
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Figure 3: The optimal strategy. The symbols are explained at the beginning of Section 7.
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