46 research outputs found

    Deletion of cftr Leads to an Excessive Neutrophilic Response and Defective Tissue Repair in a Zebrafish Model of Sterile Inflammation.

    Get PDF
    Inflammation-related progressive lung destruction is the leading causes of premature death in cystic fibrosis (CF), a genetic disorder caused by a defective cystic fibrosis transmembrane conductance regulator (CFTR). However, therapeutic targeting of inflammation has been hampered by a lack of understanding of the links between a dysfunctional CFTR and the deleterious innate immune response in CF. Herein, we used a CFTR-depleted zebrafish larva, as an innovative in vivo vertebrate model, to understand how CFTR dysfunction leads to abnormal inflammatory status in CF. We show that impaired CFTR-mediated inflammation correlates with an exuberant neutrophilic response after injury: CF zebrafish exhibit enhanced and sustained accumulation of neutrophils at wounds. Excessive epithelial oxidative responses drive enhanced neutrophil recruitment towards wounds. Persistence of neutrophils at inflamed sites is associated with impaired reverse migration of neutrophils and reduction in neutrophil apoptosis. As a consequence, the increased number of neutrophils at wound sites causes tissue damage and abnormal tissue repair. Importantly, the molecule Tanshinone IIA successfully accelerates inflammation resolution and improves tissue repair in CF animal. Our findings bring important new understanding of the mechanisms underlying the inflammatory pathology in CF, which could be addressed therapeutically to prevent inflammatory lung damage in CF patients with potential improvements in disease outcomes

    Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a β-lactam (cefoxitin or imipenem). The triple combination is used without any β-lactamase inhibitor, even though M. abscessus produces the broad-spectrum β-lactamase BlaMab. We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus. The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 μg/ml), amikacin (32 μg/ml), and avibactam (4 μg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 μg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 μg/ml) and high (32 μg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessus in vitro, in macrophages, and in zebrafish embryos, indicating that this β-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the β-lactamase is inducible in macrophages

    Lsr2 is an important determinant of intracellular growth and virulence in Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus, a pathogen responsible for severe lung infections in cystic fibrosis patients, exhibits either smooth (S) or rough (R) morphotypes. The S-to-R transition correlates with inhibition of the synthesis and/or transport of glycopeptidolipids (GPLs) and is associated with an increase of pathogenicity in animal and human hosts. Lsr2 is a small nucleoid-associated protein highly conserved in mycobacteria, including M. abscessus, and is a functional homologue of the heat-stable nucleoid-structuring protein (H-NS). It is essential in Mycobacterium tuberculosis but not in the non-pathogenic model organism Mycobacterium smegmatis. It acts as a master transcriptional regulator of multiple genes involved in virulence and immunogenicity through binding to AT-rich genomic regions. Previous transcriptomic studies, confirmed here by quantitative PCR, showed increased expression of lsr2 (MAB_0545) in R morphotypes when compared to their S counterparts, suggesting a possible role of this protein in the virulence of the R form. This was addressed by generating lsr2 knock-out mutants in both S (Δlsr2-S) and R (Δlsr2-R) variants, demonstrating that this gene is dispensable for M. abscessus growth. We show that the wild-type S variant, Δlsr2-S and Δlsr2-R strains were more sensitive to H2O2 as compared to the wild-type R variant of M. abscessus. Importantly, virulence of the Lsr2 mutants was considerably diminished in cellular models (macrophage and amoeba) as well as in infected animals (mouse and zebrafish). Collectively, these results emphasize the importance of Lsr2 in M. abscessus virulence

    Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking

    Get PDF
    Mycobacterium abscessus is considered the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. Infections with M. abscessus are increasingly found in patients with chronic lung diseases, especially cystic fibrosis, and are often refractory to antibiotic therapy. M. abscessus has two morphotypes with distinct effects on host cells and biological responses. The smooth (S) variant is recognized as the initial airway colonizer while the rough (R) is known to be a potent inflammatory inducer associated with invasive disease, but the underlying immunopathological mechanisms of the infection remain unsolved. We conducted a comparative stepwise dissection of the inflammatory response in S and R pathogenesis by monitoring infected transparent zebrafish embryos. Loss of TNFR1 function resulted in increased mortality with both variants, and was associated with unrestricted intramacrophage bacterial growth and decreased bactericidal activity. The use of transgenic zebrafish lines harboring fluorescent macrophages and neutrophils revealed that neutrophils, like macrophages, interact with M. abscessus at the initial infection sites. Impaired TNF signaling disrupted the IL8-dependent neutrophil mobilization, and the defect in neutrophil trafficking led to the formation of aberrant granulomas, extensive mycobacterial cording, unrestricted bacterial growth and subsequent larval death. Our findings emphasize the central role of neutrophils for the establishment and maintenance of the protective M. abscessus granulomas. These results also suggest that the TNF/IL8 inflammatory axis is necessary for protective immunity against M. abscessus and may be of clinical relevance to explain why immunosuppressive TNF therapy leads to the exacerbation of M. abscessus infections

    Evolution and host-specific adaptation of <i>Pseudomonas aeruginosa</i>.

    Get PDF
    The major human bacterial pathogen Pseudomonas aeruginosa causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups. Our findings thus explain the pathogenic evolution of P. aeruginosa and highlight the importance of global surveillance and cross-infection prevention in averting the emergence of future epidemic clones

    Zebrafish as a novel vertebrate model of Mycobacterium abscessus infection

    No full text
    Mycobacterium abscessus (Mabs) est un pathogène émergent entrainant de graves infections pulmonaires, notamment chez les patients mucoviscidosiques. L'expression différentielle des glycopeptidolipides (GPLs) permet de distinguer le morphotype rugueux (R), présentant un défaut de synthèse des GPLs, du morphotype lisse (S) exprimant les GPLs. Différents modèles ex vivo et in vivo rapportent que le variant R est impliqué dans des manifestations plus sévères associées à une réponse inflammatoire intense. Cependant, ces modèles d'étude restent particulièrement limités pour élucider les caractéristiques de cette infection. L'embryon de zebrafish (ZF) offre de nombreux avantages motivant et validant son utilisation pour une meilleure compréhension des maladies infectieuses. Ce travail de thèse a pour objectif de développer un modèle d'infection de Mabs dans l'embryon de ZF.Pour étudier la physiopathologie de l'infection de Mabs dans ce modèle, l'élaboration d'un protocole de microinjection des bactéries et des méthodes de suivi de la charge bactérienne ont été réalisés. Les techniques d'imagerie ont été employées pour déterminer la chronologie de l'infection au sein des embryons infectés. Les techniques de qRT-PCR, l'utilisation de lignées de ZF transgéniques et la technologie antisens (morpholinos) ont été utilisées pour déterminer le rôle du système immunitaire (Si) inné et de l'inflammation dans la physiopathologie infectieuse. Par ailleurs, le potentiel du ZF en tant qu'organisme modèle en pharmacologie a été mis à profit pour étudier l'activité in vivo d'antibiotiques (ATB) sur Mabs.Le variant R induit une infection létale plus robuste que le S, caractérisée par le développement d'abcès au niveau du système nerveux central (SNC) associés à une réponse inflammatoire intense et au recrutement de neutrophiles. Le suivi des infections a révélé que les bactéries étaient rapidement phagocytées par les macrophages au niveau du site d'injection. Une fois infectés, ces derniers traversent la barrière endothéliale et transportent les mycobactéries dans les tissus du SNC, soulignant leur rôle clé dans la dissémination du pathogène. Des expériences menées dans des embryons dépourvus de macrophages ont validé ces observations en montrant que les bactéries étaient incapables de rejoindre le SNC et restaient confinées dans le système vasculaire. Implanté au sein du tissu nerveux, le macrophage infecté entre en apoptose, libérant ainsi le pathogène dans le milieu extracellulaire. Une fois libéré, à la différence du variant S, la morphotype R forme des cordes augmentant rapidement de taille et capables d'initier le développement d'abcès volumineux. La taille démesurée de ces cordes par rapport à celle des phagocytes professionnels représenterait une stratégie permettant au variant R d'échapper à la phagocytose et donc de promouvoir sa multiplication extracellulaire et d'assurer la progression létale du processus infectieux. Enfin, ce modèle nous a permis de déterminer, en temps réel, l'efficacité thérapeutique de plusieurs ATBs sur les embryons infectés,qui s'accompagne d'une forte réduction de mortalité des embryons et d'une importante diminution des signes physiopathologiques au niveau du SNC. Ces résultats indiquent que l'embryon de ZF représente un modèle d'infection prometteur et pertinent pour 1) l'étude de la virulence de Mabs 2) l'évaluation de la contribution du SI innée au cours de l'infection et 3) le suivi directe de l'effet d'ATBs. Ce nouveau modèle, combiné aux outils déjà disponibles chez le ZF, devrait permettre de mieux caractériser la relation entre Mabs et mucoviscidose, notamment l'implication éventuelle de la protéine CFTR dans la résistance à cette bactérie. Par ailleurs, l'embryon étant particulièrement propice au criblage à haut débit, l'optimisation de ce système biologique pourrait être exploitée dans le cadre d'approches thérapeutiques innovantes pour identifier de nouveaux agents anti-infectieux contre Mabs.The emerging pathogen Mycobacterium abscessus causes severe lung infections particularly in cystic fibrosis (CF) patients. The Smooth (S) morphotype displays surface expression of glycopeptidolipids (GPL) while the Rough (R) morphotype is characterized by the loss of surface-associated GPL. Previous studies suggested that the R variant is involved in more severe clinical forms, associated with a hyper-proinflammatory response. However, the molecular mechanisms responsible for the virulence and physiopathology associated to the Rvariant remain unknown. The zebrafish embryo offers many advantages that motivated and validated its use for a better understanding of infectious diseases. In this study, a zebrafish model of infection was developed toinvestigate and compare the pathogenesis of R and S variants.A microinjection protocol was first developed and the fate and progression of the infection was monitored at a spatiotemporal level by videomicroscopy. A transcriptomic approach by qRT-PCR, an antisense technology using morpholinos and transgenic zebrafish lines were used to evaluate the contribution of theinnate immune system and the role of inflammation during infection. In addition, the potential of the embryo has been used to study the in vivo pharmacological activity of antibiotics during M. abscessus infection. In contrast to the S variant, the R morphotype induced a more robust and lethal infection in zebrafish embryos, characterized by the rapid development of bacterial foci within the central nervous system (CNS). The use of a mpx:GFP zebrafish transgenic line, exhibiting green fluorescent granulocytes, indicated that neutrophils are actively recruited to CNS infection foci. An intense pro-inflammatory response with production of TNFα was measured by qRT-PCR. Next, the use of a mpeg1:mCherry transgenic zebrafish line, exhibiting red fluorescent macrophages, demonstrated the presence of isolated or small aggregated bacilli within macrophages during early infection. In contrast, later stages were characterized by the presence of large aggregates of extensively replicating extracellularly that enables mycobacteria to induce a strong inflammatoryresponse, leading to rapid tissue damage (abscess) and to larval death. In addition, the high propensity of the R variant to form cords in vivo may, represent a strategy evolved by the R (but not S) M. abscessus, to escape themacrophage or avoid being phagocytosed by macrophages or granulocytes. The role of macrophages in the diffusion of bacteria to the CNS was evaluated in macrophage-depleted embryos. Here, M. abscessus failed to disseminate from vasculature to CNS as shown by infections performed in KDR:GFP transgenic line, exhibiting green vascular endothelium. In addition, we also showed that the activity of antibiotics on infected-embryos is associated with a strong reduction of embryonic mortality, reduction in the bacterial burden and a significant decrease in physiopathological signs in the CNS, which could be imaged in real-time and at high resolution.These results propose the zebrafish embryo as a suitable model, particularly relevant to 1) the study of M. abscessus virulence, 2) the evaluation of role of innate immune system during infection process and to 3)monitor, at spatiotemporal level, the effects of antibiotics in an infected vertebrate. In addition, the antisense technology allowing knocking-down cftr expression can now be optimized to mimic a CF environment. This should greatly help to define the relationship between M. abscessus in CF patients. Moreover, the embryo isparticularly conducive to high-throughput screening, thus allowing this biological system to be exploited in the search for new therapeutic molecules against M. abscessus and other CF-associated patient

    Regard à travers le danio pour mieux comprendre les interactions hôte/pathogène

    No full text
    Le danio (zebrafish, poisson zèbre) offre de nombreux avantages qui ont motivé et validé son utilisation récente pour étudier la virulence de plusieurs pathogènes humains. Son système immunitaire, homologue à celui des mammifères, ainsi que la transparence de ses embryons, adaptée au suivi en temps réel des infections via l’utilisation de techniques d’imagerie, en font un modèle d’étude particulièrement innovant. Ses propriétés uniques permettent d’observer et de décrypter les interactions hôte-pathogène au niveau cellulaire, de décrire les événements physiopathologiques propres à chaque pathogène et les mécanismes de défense de l’hôte. Outre ces avantages en recherche fondamentale, ce modèle est également porteur d’applications médicales potentielles dans la découverte de nouvelles molécules anti-infectieuses
    corecore