
Introduction 
The major human bacterial pathogen, Pseudomonas aeruginosa, causes multidrug-resistant 

infections, particularly in people with underlying immunodeficiencies or inflammatory lung 

diseases, such as Cystic Fibrosis (CF). However, it remains unclear how P. aeruginosa has 

evolved into a highly adapted, globally disseminated pathogen causing both CF and non-CF 

infections. 

Rationale 
We therefore sought to understand the pathogenic evolution of P. aeruginosa, by defining 

when and how epidemic clones emerged and spread, exploring how they have adapted to 

specific hosts, and understanding how within-host evolution has influenced ongoing 

transmission patterns. 

Results 
We analysed a global collection of 9,829 isolates of P. aeruginosa, identifying 21 major clones, 

which we term ‘epidemic’. These epidemic clones were more likely to be detected in infected 

humans than in the non-built environment, caused most clinical P. aeruginosa infections 

worldwide, were widely distributed across the phylogenetic tree, and had all spread globally. 

We estimate that these epidemic clones emerged from ancestral locations distributed around 

the world, and then expanded non-synchronously between the late 17th and late 20th centuries, 

potentially driven by changes in human population density, migration patterns, and/or air 

pollution. Through inferring a pan-genome graph, we identified significant differences between 

epidemic and sporadic isolate genomes in the acquisition of genes involved in specific cellular 

processes, such as transcriptional control and metabolism (Figure 0).  

We found that epidemic clones appeared to have intrinsic preferences for CF or non-CF 

individuals and discovered that clinical isolates clustered in transcriptional space based on the 

host-preference of epidemic clones, with a clear expression signature of genes positively and 

negatively associated with CF affinity. We found that high CF affinity clones were better able 

to survive within CF macrophages, in part mediated by expression of the stringent response 

modulator DksA1, suggesting that enhanced host innate immune evasion might explain the 

intrinsic success at infecting CF patients of certain epidemic clones (Figure 0).  

Examining the recent mutation history of individual clones to understand how epidemic clones 

of P. aeruginosa have adapted to the human host through multiple rounds of within-patient 

evolution by analysing, we identified 224 out of 5641 genes that had a higher total mutational 

burden than expected by chance, which we term ‘pathoadaptive’.  

We found that the products of these pathoadaptive genes were tightly interconnected, 

indicating their likely coordinated functional roles. Many genes were more frequently mutated 



in either CF or non-CF isolates, suggesting that distinct functional programmes were being 

modified as part of host-specific adaptation (Figure 0).  

Pathoadaptive genes were frequently associated with changes in transmissibility and/or host-

specific adaptation, thereby potentially driving host specialisation. In support of this notion, we 

found strong evidence of cross-infection either between CF patients or between non-CF 

patients, but very little CF to non-CF transmission (Figure 0).  

Conclusion 
Our findings describe the key sequential steps involved in the evolution of P. aeruginosa from 

an environmental organism to a major human pathogen: saltatory evolution caused by 

horizontal gene transfer generating epidemic clones; varying intrinsic host affinities of these 

clones (linked to specific transcriptional changes enabling survival within macrophages); and 

multiple rounds of convergent, host-specific adaptation, eventually resulting in the loss of their 

ability to transmit between different patient groups. Our work thus highlights the importance of 

global surveillance and cross-infection prevention in averting the emergence of future 

epidemic clones. 

Caption 

Figure 0. Host-specific evolution of Pseudomonas aeruginosa. We define key steps in 

the pathogenic evolution of P. aeruginosa: (1) Environmental clones with epidemic potential 

are created through horizontal transfer of genes with specific cellular roles (revealed through 

comparative pan-genome graph analysis of epidemic and sporadic isolates); (2) Emerging 

epidemic clones have intrinsic varying preference for Cystic Fibrosis (CF) hosts, which is 

transcriptionally driven and reflects increased ability to survive within CF macrophages; (3) 

Multiple rounds of within-host evolution then leads to distinct evolutionary trajectories for 

isolates infecting CF versus non-CF patients, mediated through different patterns of mutations 

in 224 ‘pathoadaptive’ genes which influence transmissibility and/or host-specific adaptation; 

(4) As a result of host specialisation, transmission is constrained between CF and non-CF 

patients. Top panel created with BioRender.com 
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Abstract 2 
The major human bacterial pathogen, Pseudomonas aeruginosa, causes multidrug-resistant 3 
infections in people with underlying immunodeficiencies or structural lung diseases, such as 4 
Cystic Fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene 5 
acquisition, have become dominant epidemic clones that have sequentially emerged and 6 
spread through global transmission networks over the past 200 years. These clones 7 
demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to 8 
specific transcriptional changes enabling survival within macrophages), have undergone 9 
multiple rounds of convergent, host-specific adaptation, and have eventually lost their ability 10 
to transmit between different patient groups. Our findings thus explain the pathogenic 11 
evolution of P. aeruginosa and highlight the importance of global surveillance and cross-12 
infection prevention in averting the emergence of future epidemic clones.  13 
 14 
  15 
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P. aeruginosa is found widely in natural and man-made environments (1–5) and has become 16 
an increasingly important opportunistic human pathogen, causing acute nosocomial lung, soft 17 
tissue, and systemic infections (6), as well as chronic pulmonary infections in individuals with 18 
underlying inflammatory lung diseases, such as Chronic Obstructive Pulmonary Disease 19 
(COPD) (7), CF (8), and non-CF bronchiectasis (9), where it causes increased morbidity and 20 
mortality (8, 10). Antimicrobial resistance (AMR) in P. aeruginosa is increasing globally 21 
(recognised by its inclusion in the WHO ESKAPE pathogen list (11)) and is responsible for 22 
over 300,000 deaths annually (12).  23 

Although individuals frequently acquire P. aeruginosa independently from the environment, 24 
hospital-based person-to-person transmission is well recognised in people with CF, leading to 25 
strict cohort and individual segregation within clinics (8), but has not been considered a risk in 26 
other patient cohorts (13). Nevertheless, epidemic clones of P. aeruginosa have been 27 
identified in both CF and non-CF infection studies (14–17), suggesting the presence of wide-28 
spread transmission networks. In CF, these epidemic clones (such as the Liverpool Epidemic 29 
Strain; LES) are associated with accelerated inflammatory lung damage and worse clinical 30 
outcomes, demonstrating that epidemic clones can emerge with increased virulence in 31 
particular patient groups.  32 

We therefore sought to understand the pathogenic evolution of P. aeruginosa, by defining 33 
when and how epidemic clones emerged and spread, exploring how they have adapted to 34 
specific hosts, and understanding how within-host evolution has influenced ongoing 35 
transmission patterns. 36 

Results 37 
Phylogenetic analysis reveals global epidemic clones. 38 
We first analysed a globally-distributed collection of 9,829 human, animal, and environmental 39 
isolates of P. aeruginosa, including 9,573 human clinical samples from 2,765 patients  (14, 40 
18–27) (Figure 1A; Table S1), which we grouped into 596 genetically-related clones (based 41 
on pairwise single nucleotide polymorphism (SNP) distances) and then stratified by the 42 
number of patients infected by each clone (Figure 1B; Figure S1; Supplementary Methods). 43 
We identified 21 major clones each containing isolates from at least 30 individuals, which we 44 
term ‘epidemic’ and refer to by their majority multi-locus sequence type (28). 45 

We found that these epidemic clones were more likely to be detected in infected humans than 46 
in the non-built environment (Fisher exact test p = 7.80 x 10-12), caused 51 % of all clinical P. 47 
aeruginosa infections worldwide, were widely distributed across the phylogenetic tree, and 48 
had all spread globally (Figure 1C; Figure S1; Table S1). 49 

Inferring population expansion and geography of epidemic clones over time. 50 



 4 

Since our sample collections spanned over 100 years (from 1900 to 2018), we wondered 51 
whether we could explore the historical origins of epidemic clones using Bayesian temporal 52 
reconstruction (29). We estimate that epidemic clones emerged non-synchronously between 53 
the late 17th and late 20th centuries (Figure S2) and (through Skyline demographic modelling 54 
(30); Figure S3) have each undergone at least one major population expansion between 1850 55 
and 2000 (Figure 1D), suggesting (considering only extant clones) that P. aeruginosa has 56 
undergone relatively recent changes in host-pathogen dynamics, potentially driven by 57 
changes in human population density, migration patterns (31, 32), and/or increased 58 
susceptibility to infections (caused, for example, by increased air pollution during 59 
industrialisation (33–35)). 60 

For epidemic clones with geographically clustered clades (association test p value <0.05), we 61 
implemented Bayesian phylogeographic methods (36) to infer the ancestral location of clones 62 
(accepting the limitations of our opportunistic sample collection). In some instances, for 63 
example ST235, we were able to find statistical support for the direction of intercontinental 64 
spread (from South America to North America and Europe, and then subsequently Asia and 65 
Africa; Figure S4), whereas, for other clones such as ST17 and ST27, we could identify only 66 
that transmission was restricted to between Europe and North America and peaked in the 67 
second half of the 20th century (Figure S4). We conclude that epidemic clones have likely 68 
arisen from ancestral locations distributed around the world.  69 

Horizontal gene transfer may drive emergence of epidemic clones. 70 
We next asked why some P. aeruginosa clones had become epidemic and investigated 71 
whether gene acquisition, through horizontal transfer, might have driven large jumps in human 72 
infectivity through saltatory evolution (37) (meaning abrupt changes in evolutionary fitness 73 
caused by sudden large genetic changes), as previously observed in Mycobacterium 74 
abscessus (38). To accurately analyse the P. aeruginosa accessory genome, we first inferred 75 
a pan-genome graph (using Panaroo (39)), with nodes as clusters of orthologous genes and 76 
two nodes linked by an edge if they were found adjacent in any contig (Figure 1E). We then 77 
compared the accessory genomes of representatives of ancestral epidemic clones with those 78 
of sporadic isolates and found that epidemic clones had significant enrichment of genes 79 
involved in transcriptional regulation, inorganic ion transport, lipid metabolism, and protein 80 
turnover, with significant depletion of genes involved in bacterial defence and secretion (Fisher 81 
exact test, FDR = 0.1; Figure 1E; Figure S5, Table S2); suggesting that fundamental changes 82 
in bacterial physiology might have driven the development of epidemic clones. 83 

Epidemic clones vary in their intrinsic host preference. 84 
We next examined the types of human infection caused by the epidemic clones and found that 85 
ST146, also known as the Liverpool Epidemic Strain, caused infection almost exclusively in 86 
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people with CF while other clones (e.g., ST175 and ST309) caused infection only in non-CF 87 
individuals, with a range of CF and non-CF host distributions for other clones (Figure 2A). 88 
While our collection was opportunistically sampled, our findings were replicated when re-89 
analysing existing systematic UK surveillance data (40) for the frequency of CF and non-CF 90 
lung infections caused by each epidemic clone (Figure S6). We hypothesised that this 91 
apparent clone-specific host preference might relate to intrinsic differences in bacterial 92 
behaviour between clones. We found no evidence, on pangenome analysis, for an association 93 
of host affinity with acquisition of genes with a particular function (Figure S7) and therefore 94 
we reasoned that changes in gene expression could explain differences in host preference. 95 
We therefore analysed a previous transcriptomic study of clinical P. aeruginosa isolates 96 
(nearly all from non-CF patients; (25)) that were represented in our sample collection, and 97 
found that clinical isolates clustered in transcriptional space based on the host-preference of 98 
epidemic clones (p < 0.001; Figure 2B; Supplementary Methods).  99 

We next explored whether there were any patterns in gene expression associated with clone 100 
predisposition for specific human hosts and identified, using a negative binomial generalised 101 
linear model, a clear expression signature of 624 genes positively associated, and 514 genes 102 
inversely associated, with affinity for causing CF infection (Wald test, FDR = 0.05; Figure 2C; 103 
Table S3).  104 

Increased survival within macrophages of high CF affinity clones  105 
To identify a potential mechanism by which differential gene expression could alter the host-106 
preference of epidemic clones, we conducted a multi-dimensional phenotypic characterisation 107 
of 49 representative isolates (almost all from non-CF patients to minimise the contribution of 108 
secondary host-specific adaptation) from epidemic clones with low (ST235, ST111), 109 
intermediate (ST253), and high levels of CF affinity (ST17, ST27, ST146) obtained from the 110 
International Pseudomonas Consortium Database (21). We initially examined isolate 111 
behaviour in established assays of Pseudomonas virulence (biofilm formation, siderophore 112 
production, swim and twitch motility, and production of caseinase and gelatinase) but could 113 
find no correlation with clonal host affinity (Figure S8).  114 

We therefore decided to test the ability of representative isolates of different epidemic clones 115 
to withstand intracellular killing by macrophages that, together with neutrophils, are thought to 116 
be the first line of defence against bacterial lung infection (41, 42). We found significantly 117 
increased intracellular survival and replication of isolates from the high CF affinity clone (ST27) 118 
compared to isolates from the low/intermediate clones ST111 and ST235 in both wildtype and 119 
CF (F508del homozygous) isogenic macrophage cell lines (Figure 2D; Table S4), suggesting 120 
that enhanced host innate immune evasion might explain the intrinsic success of particular 121 
epidemic clones in infecting CF patients.  122 
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Host preference of epidemic strains is mediated by DksA1 expression.  123 

To further explore the bacterial mechanisms contributing to enhanced intracellular survival of 124 
bacterial isolates from high CF affinity clones, we interrogated the differentially-expressed 125 
gene set (Figure 2C) and discovered that both the expression of the stringent response 126 
modulator DksA1 and the activation of its regulon were associated with CF affinity (Figure 127 
3A). Since DksA1 had previously been implicated in enhancing P. aeruginosa survival within 128 
mouse macrophages and increasing tolerance to H2O2 (43), we examined the impact of 129 
deleting DksA1 on bacterial survival by using in vitro and in vivo models of non-CF and CF 130 
infection employing P. aeruginosa PAO1 wildtype and isogenic DksA1 and DksA2 double 131 
knockout (DDksA1,2), and complemented (DDksA1,2::DksA1) strains (DDksA1,2 double 132 
knockout mutants were used due to gene redundancy (44). 133 

We first tested bacterial survival in macrophages and found that, while all three strains were 134 
effectively killed in wildtype THP1 macrophages, only the DDksA1,2 strain could be killed by 135 
isogenic CF (F508del knock-in) cells while wildtype and complemented bacteria were able to 136 
resist macrophage killing and replicate intracellularly (Figure 3B). Our findings reveal a 137 
number of important features of host-Pseudomonas interactions: firstly, that there are intrinsic 138 
defects in CF macrophages that facilitate intracellular survival of P. aeruginosa (observations 139 
that are supported by previous in vitro reports (45)  and by our in vivo experiments in zebrafish, 140 
where deletion (46) or morpholino knockdown of the Cystic Fibrosis Transmembrane 141 
Regulator (cftr) compromises survival after intravenous infection (Figure S9)); secondly, that 142 
intracellular survival in CF macrophages is mediated by DskA1, raising intriguing mechanistic 143 
questions about the role of the stringent response in surviving the phagosomal environment; 144 
and finally, that differences in DksA1 expression across epidemic clones may explain their 145 
observed different abilities to survive within macrophages and, potentially as a consequence, 146 
their varying intrinsic host preferences.  147 

To explore the potential role of DksA1 further, we examined the behaviour of fluorescently 148 
labeled wildtype, DDksA1,2 mutant and complemented P. aeruginosa PAO1 during in vivo 149 
infection in zebrafish larvae (Figure 3C-G). We observed increased survival of both control 150 
and cftr morpholino-treated fish after infection with DDksA1,2 bacteria compared to wildtype 151 
and complemented strains (Figure 3D); findings which correlated with an observed decreased 152 
survival of DDksA1,2 bacteria in vivo (Figure 3E).  153 

We then exploited the optical transparency of zebrafish larvae to track the interaction of 154 
macrophages with P. aeruginosa following intramuscular infection using intravital confocal 155 
microscopy. Utilizing a fluorescent macrophage reporter fish line (Tg(mpeg1:mcherry-F)ump2; 156 
(47)), we could clearly identify macrophages and distinguish extracellular from intracellular 157 
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fluorescent bacteria (Figure 3F). We found no difference in the mobilization of macrophage to 158 
the site of infection, or the proportion of infected macrophages, in control and cftr morpholino 159 
fish infected with wildtype, DDksA1,2 mutant or complemented P. aeruginosa PAO1 bacteria 160 
(Figure S9; Figure 3G). We did however observe a clear reduction in macrophage bacterial 161 
burden (suggesting reduced intracellular replication) following DDksA1,2 infection of both 162 
control and cftr morpholino fish lines (Figure 3G), confirming the critical role of DksA1 for 163 
intracellular survival during in vivo P. aeruginosa infection. 164 

Taken together, our data indicate that intrinsic elevations in DksA1 expression levels in some 165 
epidemic clones may have enabled them to exploit potential innate immune defects in CF and 166 
adopt the specific evolutionary strategy of replicating within macrophages.  167 

Convergent host-specific adaptation of P. aeruginosa 168 
We next examined how, once selected from the environment, epidemic clones of P. 169 
aeruginosa have adapted to the human host through multiple rounds of within-patient 170 
evolution by analysing the recent mutation history of individual clones.  171 

By reconstructing mutations that had likely occurred since the emergence of each clone, we 172 
found strong evidence for convergent molecular evolution, identifying 224 out of 5641 genes 173 
that had a higher total mutational burden than expected by chance (Poisson test, FDR = 0.05; 174 
Figure 4A; Table S5), which we term ‘pathoadaptive’. Mutations in these pathoadaptive genes 175 
were more likely to be non-synonymous and deleterious (by variant effect annotation (48)) 176 
than those found in other genes (Fisher exact test p < 1.0 x 10-16), and were predicted to be 177 
more likely to cause protein dysfunction, as estimated by both sequence conservation 178 
methods (SIFT (49); Wilcoxon rank-sum test, p = 9.04 x 10-15) and structural modelling 179 
approaches (FoldX (50); Wilcoxon rank-sum test, p = 1.34 x 10-6) (Figure S10), suggesting 180 
that pathoadaptation is largely driven by loss-of-function mutations. We explored the functional 181 
impact of pathoadaptive mutations experimentally by using existing RNAseq datasets (25) to 182 
examine the effect of transcription factor variants on expression of their previously 183 
characterised regulons (51–54) and found that clinical isolates with pathoadaptive variants in 184 
several transcription factor had statistically significant shifts in regulon expression levels 185 
compared to controls (two tailed t-test with adjusted p-value < 0.00014; Figure S10), 186 
supporting the concept of a general loss-of-function evolutionary process driving P. 187 
aeruginosa pathoadaptation. 188 

We were able to functionally annotate the majority of these pathoadaptive genes using prior 189 
published information (55), identifying many of them as having established roles in recognised 190 
pathogenic processes including biofilm formation, antibiotic resistance and LPS modification 191 
(Figure S11). The number of genes with an established function was much higher among 192 
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pathoadaptive genes than in other genes (Fisher exact test p < 1.0 x 10-16; Figure S11), 193 
potentially reflecting their central role in P. aeruginosa pathobiology. We also characterised 194 
the function of 41 pathoadaptive genes experimentally by de novo screening relevant 195 
transposon mutants in a series of functional assays to quantify virulence traits 196 
(Supplementary Methods; Figure S11).  197 

We next examined the nature of host adaptation achieved by individual P. aeruginosa isolates 198 
by using the profile of their pathoadaptive gene mutations to map them in evolutionary space 199 
(defined by the presence or absence of mutations in the 224 pathoadaptive genes). We found 200 
that CF isolates clustered separately from others and had accumulated more mutations, 201 
suggesting that the CF lung is a distinct niche with different selective pressures compared to 202 
other lung or non-lung environments (Figure 4B).  203 

We found that the products of these pathoadaptive genes were tightly interconnected, with 204 
more protein-protein interactions than expected by chance (STRING database (56); p < 1 x 205 
10-16; Figure 4C; Figure S12), indicating their likely coordinated functional roles. We observed 206 
that 70 genes were more frequently mutated in CF isolates while 55 genes were more 207 
commonly mutated in non-CF isolates (Fisher exact test, FDR = 0.1). Among genes that were 208 
more commonly mutated in CF or non-CF, we found several overrepresented pathways (using 209 
Gene Ontology biological pathway enrichment analysis with TopGO (57)), suggesting that 210 
distinct functional programmes were being modified as part of host-specific adaptation (Figure 211 
4C). For example, CF isolates were more likely to have mutated AlgU, a key regulator of 212 
mucoidy (58) (with mutations occurring predominantly at the interface between this sigma-H 213 
factor and its negative regulator protein, MucA), and PcnA, a putative nicotinamidase (with 214 
mutations found within the protein core or at sites of protein-protein interaction; Figure S13).  215 
In contrast, non-CF isolates were more likely to have mutated LadS, a calcium-responsive 216 
histidine kinase (59) (with mutations concentrated in the N-terminal (sensor) and 217 
transmembrane domains), and in the putative choline transporter BetT2 (60), with helix-218 
breaking mutations found within the transmembrane domain (Figure S13).  219 

Distinct evolutionary trajectories lead to host specialisation  220 
We then used ancestral state reconstruction to determine the order of acquisition of each 221 
pathoadaptive mutation and thereby recreate the evolutionary trajectory of each isolate. We 222 
found that, on average, CF isolates had longer trajectories than non-CF isolates (with 20.5 223 
compared to 11.2 steps, Wilcoxon signed-rank test p < 1.0 x 10-16, Figure S14). By looking at 224 
the frequency of mutations in pathoadaptive genes at each evolutionary time-step, we were 225 
able to cluster genes into 5 groups with distinct temporal signatures (Figure 5A; Figure S15), 226 
suggesting that mutations in specific genes may be important at different stages of evolution 227 
(as noted previously, specifically for AMR evolution (61)).  228 
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We wondered therefore whether specific sets of pathoadaptive genes might be driving distinct 229 
evolutionary processes such as host-specific adaptation, person-to-person transmission, or 230 
both. To examine this, we inferred the impact of each pathoadaptive gene on host-specific 231 
pathoadaptation (by examining the relative frequency of gene mutations occurring in CF 232 
compared to non-CF lung isolates), and on bacterial transmissibility (based on the frequency 233 
of specific gene mutations being found in isolates from at least two patients) to create a map 234 
of the contribution of each pathoadaptive gene to each of these evolutionary processes 235 
(Figure 5B), annotating each gene by previously known or experimentally derived function, or 236 
the type of temporal mutation signature observed (Figure 5C; Figure S16). 237 

We found that, while some pathoadaptive genes were associated with changes in either 238 
transmissibility or host-specific pathoadaptation, many were implicated in both processes 239 
(Figure S16). For example, mutations in several genes (such as mvfR and morA) occurred 240 
early in the evolutionary trajectories of isolates and were associated with both adaptation to 241 
the non-CF host and increased transmissibility, while mutations in other genes (such as in 242 
fusA1 and algU) occurred late in evolutionary journeys and were associated with adaptation 243 
to the CF host and decreased transmissibility (Figure S16).  244 

Since we observed a likely deleterious impact of several pathoadaptive mutations on 245 
transmissibility, we examined whether pathoadaptation might lead to host specialisation and 246 
result in reduced transmission of isolates between CF and non-CF individuals. To explore this 247 
possibility, we used the genomic relatedness of isolates to plot the number (and proportion) of 248 
transmission links over a range of SNP pairwise thresholds (representing transmission chains 249 
of various lengths) and found strong evidence for CF-to-CF patient transmission and non-CF 250 
to non-CF patient cross-infection but very little CF to non-CF transmission (Figure 5D). 251 
Additionally, we reconstructed transmission clusters at a specific SNP threshold (26 SNPs), 252 
based on the measured genetic diversity within individual patients (Supplementary 253 
Methods), and found transmission clusters of variable sizes but very few containing both CF 254 
and non-CF patients (Figure 5E). It seems likely therefore that host-specific pathoadaptation 255 
of epidemic P. aeruginosa clades limits transmission between different hosts.  256 

Discussion 257 

Our findings describe the key sequential steps involved in the evolution of P. aeruginosa from 258 
an environmental organism to a major human pathogen. We identify horizontal gene 259 
acquisition as a likely driver for the emergence of epidemic clones from the environment 260 
through saltational evolution (as previously described for M. abscessus (38)) and infer their 261 
spatio-temporal spread which suggests an increasing rate of new epidemic clone expansions 262 
over time (accepting that only extant clones are considered). We identify an intrinsic and 263 
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variable host-specific affinity across epidemic clones with CF preference potentially causally 264 
associated with improved intracellular survival in macrophages. We then describe how 265 
deleterious mutations in a discrete set of functionally interrelated genes likely mediate further 266 
host specialisation (through multiple rounds of within-patient adaptation) and onward 267 
transmission, thereby plausibly explain the observed lack of person-to-person transmission 268 
between CF and non-CF patients.  269 

Our work highlights the importance of preventing pathogenic evolution by minimising cross-270 
infection, not just within CF cohorts (where infection control measures are well established) 271 
but also between non-CF patients, and emphasises how global surveillance and targeted 272 
monitoring of high-risk patient groups will be needed to detect expansion, pathoadaptation, 273 
and transmission of new and extant epidemic P. aeruginosa clones.   274 
Methods summary 275 
Genomic datasets and clone assignment 276 
We collated Pseudomonas aeruginosa genome datasets from studies of antibiotic resistance 277 
(18, 23–25), from individuals with cystic fibrosis (14, 26) and non-CF bronchiectasis (22); from 278 
the International Pseudomonas Consortium (21); and from studies targeting high-risk clones 279 
(19, 20, 27). Newly sequenced genomes from the TeleCF study, which involved adults with 280 
CF (n = 15) who underwent home monitoring for six months and were chronically infected with 281 
Pseudomonas, and from bacteaemia infections (n = 365) as part of the UK BSAC bacteraemia 282 
resistance programme (62) and from patients attending hospitals in Cambridgeshire, UK were 283 
included. DNA was extracted using QIAxtractor (QIAgen), and samples were sequenced on 284 
the Illumina HiSeq 2000 and 2500 and X10 platforms. 285 

Variants were called by mapping reads against the P. aeruginosa PAO1 reference genome 286 
(accession number AE004091.2) using the multiple_mappings_to_bam 1.6 pipeline with 287 
default parameters (https://github.com/sanger-pathogens/bact-gen-scripts) employing BWA 288 
(63) for mapping followed by stringent QC filtering and removing samples with an excess 289 
number of minority variants. Ariba 2.14.6 (64) was used for multi-locus sequencing typing (28). 290 
FastTree (2.1.10) was used to infer a global phylogenetic tree (65). 291 

Clone were assigned by first grouping samples based on pairwise SNP distances using the 292 
ultra-metric pairwise group method with arithmetic means (UPGMA) and then applying a cut-293 
off of 7000 SNPs. SNP-sites was used to infer a clone-specific alignment of variable sites (66). 294 
Gubbins version 2.4.1 (67) was used to remove recombination for individual clones with at 295 
least four available genomes. 296 

Dating and phylogeography 297 
Molecular dating was performed for all 21 epidemic clone separately. Potential hypermutators 298 
(distorting the temporal signal) were removed by identifying samples with an unusual ratio of 299 

https://github.com/sanger-pathogens/bact-gen-scripts
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transition and transversion mutations. The temporal signal was assessed with TempEst (68) 300 
by comparing collection dates with root-to-tip distances using non-dated phylogenetic tress 301 
inferred with RAxML 8.2.12 (69). The significance of the signal was assessed using a 302 
permutation test using a custom script (https://github.com/chrisruis/tree_scripts/blob/ 303 
main/bootstrap_TempEst_ rttd_date.R). Clones with a significant temporal signal in this test 304 
(P < 0.05) were taken forward for molecular dating with BEAST 2.6.6 (29). We modelled the 305 
population history using the coalescent Bayesian skyline population prior. Convergence was 306 
assessed with Tracer 1.7.1 (70) with 10% burn-in. For clones that didn’t pass the bootstrap 307 
randomisation test (N = 9), a uniform prior for the substitution rate was set informed by the 308 
above clones.  309 

For clones that passed the initial test, we ran a more thorough date randomisation test as 310 
described previously (71). The estimated median substitution rates and most recent common 311 
ancestor dates for randomised BEAST runs (n=10) did not overlap with those of the runs using 312 
real collection dates, indicating a significant temporal signal. To test whether each epidemic 313 
clone has undergone a historical population expansion, we analysed Bayesian skyline plot 314 
estimates of relative genetic diversity across the posterior distribution. 315 

The association index was computed to find evidence of geographic clustering within clone 316 
phylogenies (72). We identified clones for further spatiotemporal analysis where less than 5% 317 
of randomisations had a higher association index than the non-permuted dataset. Asymmetric 318 
phylogeographic discrete trait reconstructions of the isolate continents were then performed 319 
using the BEAST classic 1.9.0 package of BEAST 2.6.6 (29). Subsampling to account for 320 
overrepresentation of certain continents was repeated five times and results compared 321 
between subsamples. Spread 0.9.7.1 (73) was used to identify candidate migration routes 322 
between continents (Bayes factor  >= 3). 323 

Pan-genome analysis 324 
Genomes were assembled from short-read data and Panaroo 1.2.8 (39) was used to cluster 325 
the gene sequences from all samples into gene families and to infer a graphical pan-genome, 326 
which was reduced, ordered against the P. aeruginosa PAO1 genome, pruned of long-range 327 
connections, and then visualised (see Supplementary Methods for details). Parsimony 328 
ancestral character state reconstruction was then used to infer gene gains and losses on the 329 
branches of the rooted tree leading to the ancestral epidemic and sporadic clones. Gene 330 
functions were then annotated using EggNog-mapper 2.1.6 (74), with the number of genes 331 
gained and annotated within a specific COG functional category compared using a Fisher 332 
exact test (adjusted p-value < 0.05). 333 

Macrophage infection experiments 334 
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Isogenic F508del homozygous THP1 cells were created from wild type THP1 cells (obtained 335 
from ATCC) using CRISPR-Cas9 editing and confirmed by Sanger sequencing (see 336 
Supplementary Methods). Wild type (WT) and F508del THP-1 monocytes were cultured, 337 
seeded at 200,000 cells/mL, and differentiated into macrophages (as previously described 338 
(75)) before being exposed to pooled clinical isolates of P. aeruginosa at a multiplicity of 339 
infection (MOI) of 1:1 and then incubated at 37 oC for 1 hour before the supernatant was 340 
removed and cells were lysed at 1h time point or incubated in fresh media for further time 341 
points (2h or 4h) before supernatant removal, cell lysis, and DNA extraction and sequencing. 342 
Strain abundance was quantified using the mSWEEP 1.4.0 sequence-based deconvolution 343 
method (76). Strains with less than 1% abundance at the 1h time point were excluded from 344 
the analysis.  345 

Transcriptomic analysis  346 
Gene expression data for clinical P. aeruginosa strains (and the UCBPP- PA14 wildtype 347 
control strain) was obtained (25), and pseudoaligned to strain-specific gene indices to produce 348 
abundance estimates using Kallisto (77). Length-scaled abundance estimates were size-349 
factor normalised by the median ratio method and modelled as a response to CF proportion 350 
per genomic cluster (as defined by the number of CF vs non-CF patients and environmental 351 
samples) using a negative binomial generalised linear model (GLM) with DESeq2 (78). The 352 
coefficients for gene models were assessed using the Wald test (adjusted p-value < 0.05). To 353 
assess the distribution and clustering of transcriptional diversity of strains with respect to CF 354 
proportion, we used k-means clustering (k=20) on the principal components (PCs) of the gene 355 
expression data, and then then calculated the mean standard deviation (!) of the CF 356 
proportion by cluster (mean ! = 0.135). A permutation test was used to assess significance 357 
(see Supplementary Methods for details) 358 

Zebrafish infection models  359 
The following zebrafish lines were used (see Supplementary Methods for details): wild type 360 
AB line; the knockout cftr sh540 mutant (46); Tg(mpeg1:mcherry-F)ump2 line (47). The 361 
morpholino for cftr knockdown (5’-GACACATTTTGGACACTCACACCAA-3’) were prepared 362 
and injected into one-cell-stage as previously described (79). Systemic infections were 363 
achieved by microinjection of GFP-expressing P. aeruginosa strains into the caudal vein of 30 364 
hours post-fertilization (hpf) zebrafish embryos as previously described (80), with survival post 365 
infection assessed daily and viable in vivo P. aeruginosa quantified by colony forming units 366 
(CFU) at 1 day post infection (dpi). Macrophage responses were examined by intramuscular 367 
injection of anesthetized Tg(mpeg1:mcherry-F)ump2 larvae at 3 days post fertilisation (dpf) 368 
with GFP-expressing fluorescent P. aeruginosa as previously described (79, 81). Macrophage 369 
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chemotaxis, phagocytosis, and intracellular P. aeruginosa burden were quantified by confocal 370 
microscopy (see Supplementary Methods for details).  371 

Mutational burden analysis 372 
Treetime 0.8.1 (82) was used to reconstruct ancestral character states of every nucleotide 373 
position in every clone. We then implemented a pipeline (83) to identify single nucleotide 374 
changes and annotate variant effect in their phylogenetic context using the gene annotation 375 
from Pseudomonas.com (PAO1 107) and the ancestral character state reconstructions (55). 376 
Parsimony ancestral character state reconstruction was used to infer ancestral insertions and 377 
deletions, using SNPeff (48) for variant effect annotation. 378 

We assessed the mutational burden of every gene based on the number of non-synonymous 379 
variants across all clones (using a Poisson test, adjusted p-value < 0.05). The 224 genes 380 
passing the adjusted p-value threshold were used to query the STRING 11.5 database (56) of 381 
protein-protein interaction. Pathoadaptive genes were assigned to 17 functional categories 382 
based on the gene products description on Pseudomonas.com (55) (Figure S1). A Fisher 383 
exact test was used to compare the number of assigned with the number of unassigned genes 384 
among pathoadaptive genes and non-hits. 385 

Impact of amino acid changes on protein stability and structural analysis 386 
All amino acid changes were analysed with SIFT 4G 6.2.1 (49) and FoldX 5 (50) (see 387 
Supplementary Methods for details). A two-tailed t-test was used to compare the averaged 388 
scores per gene/protein scores between mutational burden test hits and non-hits. Mutational 389 
frequencies were mapped on the structural models of the identified hotspot genes in P. 390 
aeruginosa using the Chimera molecular modelling package (84). Models were downloaded 391 
from the Protein Data Bank and UniProt (85). 392 

Phenotyping of pathoadaptive gene mutations 393 
PAO1 mutants with transposon insertions in 154 pathoadaptive genes (selected from the 394 
Manoil library (86) were arrayed in 96 well plates and imaged using the Phenobooth Imager 395 
(Singer Instruments) to quantify the following phenotypic traits: swimming motility, twitching 396 
motility, siderophore production, caseinase activity, gelatinase activity, and rhamnolipid 397 
production (see Supplementary Methods for details).  398 

To assess the association between genetic variants and the expression of transcription factor 399 
(TF) regulons, gene expression data from (25) were pseudoaligned to strain-specific gene 400 
sets and the normalised expression levels of TF regulons were compared between strains 401 
with and without genetic variants using Welch’s two-sample t-tests (adjusted p-value < 0.05) 402 
(see Supplementary Methods for details). 403 

Transmission and host selectivity of pathoadaptive mutations 404 
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To assess the transmissibility of pathoadaptive changes, the number of mutations that had 405 
been observed in at least two isolates (from different patients) was compared with hitherto 406 
untransmitted mutations using a Fisher exact test (adjusted p-value < 0.1). TopGO 2.4.6 was 407 
used for functional enrichment analysis of the host-specific Gene Ontology biological pathway 408 
annotation compared to background (57), using annotations from Pseudomonas.com (55) (p-409 
value < 0.05).  410 

Mutations in pathoadaptative genes were stratified by the (ancestral) infection type (CF or 411 
non-CF) of every branch based on outgroup-rooted rooted clone trees. To assess host-specific 412 
pathoadapdation, the number of CF vs non-CF mutations were compared using a Fisher exact 413 
test (adjusted p-value < 0.1). Mutations on branches with non-concordant ancestral infection 414 
types were discarded.  415 

Trajectories were inferred as the sequence of mutations in pathoadaptive genes since the 416 
emergence of the clone ancestor as implied by the PAO1-rooted tree stratified by cystic 417 
fibrosis (CF) and non-CF infection types. Mutation frequencies were position normalised and 418 
the frequency plots of the 40 genes with the lowest p-value from the mutational-burden test 419 
were manually assigned into five groups of genes with similar frequency curve shapes. 420 
Trendlines were generated by locally-weighted smoothing. 421 

We established a relatedness cut-off to define potential transmission links using pairwise SNP 422 
differences between pairs of isolate genomes from the same patient (n = 81 patients). We 423 
then identified potential transmission events as isolates from the same clone sampled from 424 
different patients that differed by 26 SNPs or fewer, visualised using Cytoscape. 425 

 426 
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Figure 1. The emergence of epidemic clones of Pseudomonas aeruginosa. (A) 834 
Geographical location of the whole genome sequenced P. aeruginosa isolates obtained from 835 
patients, animals, and environment analysed in this study (n = 9,573). Number of samples 836 
from each location indicated by the size of blue dot. (B) Cumulative number of isolates across 837 
P. aeruginosa clones (defined by clustering genomes using the unweighted pair group method 838 
with arithmetic means; see Supplementary Methods), arranged by ascending number of 839 
genomes per clone and stratified into epidemic (n ≥30 isolates/clone; red), non-unique (1 < n 840 
< 30 isolates/clone; light brown), and unique (n = 1 isolate/clone; blue) groups. (C) Left: 841 
Maximum likelihood phylogenetic tree generated from genomes of all study isolates (major 842 
epidemic clones labelled in red). Right Bar plot representing the number of cities where each 843 
epidemic clone was found, coloured by continent. (D) Estimated date of first population 844 
expansion of 21 epidemic clones (predicted by Bayesian inference using BEAST (29)) with 845 
graph showing median and interquartile range (IQR; boxplots), 1.5 times IQR range 846 
(whiskers), and data points outside this range (black points). (E) Pangenome graph analysis 847 
of ancestral representatives of epidemic clones (n = 21) and sporadic clones (n = 80), 848 
constructed using Panaroo (39), where nodes represent clusters of orthologous genes and 849 
two nodes are connected by an edge if they are adjacent on a contig in any sample from the 850 
population, define gene gain events associated with the emergence of epidemic clones 851 
(described in detail in Figure S5) with genes highlighted that are involved in transcription 852 
(blue), defense mechanisms (purple), and inorganic ion transport and metabolism (yellow).For 853 
illustration purposes, the graph has been ordered against the genome of P. aeruginosa PAO1. 854 
Inset: magnified section of the pangenome graph is shown to illustrate node and edge 855 
structure.  856 

Figure 2 Variable intrinsic host preference of epidemic P. aeruginosa clones. (A) 857 
Proportion of infections caused by epidemic clones (labelled by their majority multi-locus 858 
sequence type, ST) in cystic fibrosis (CF; red) and non-CF (blue) patients. (B) UMAP 859 
projection of transcriptomes from representative isolates of epidemic clones (25), colour-860 
coded by the CF affinity of each clone. Expression data were pseudo-aligned to strain-specific 861 
gene indices to produce estimates of gene transcript abundance. (C) Transcriptome-wide 862 
association of gene expression with CF affinity. Transcript abundances were modelled as a 863 
response to the proportion of CF infections caused by each epidemic clone using a negative 864 
binomial generalised linear model. Volcano plot visualization of the Log2-fold expression 865 
change with CF proportion for every gene in the 99% core genome of Pseudomonas 866 
aeruginosa (center). Genes with an adjusted p-value of less than 0.05 and a log2 fold change 867 
less than -0.5 were coloured in green, genes with a log2 fold change greater than 0.5 were 868 
coloured in red. The coefficients for gene models were assessed using the Wald test (FDR = 869 
0.05). Normalized expression counts vs CF proportions per epidemic clone with a trendline for 870 
the two genes with the lowest and highest log2 fold change, respectively, are shown above 871 
(top left/top right). Bulk RNA seq data was analysed from 241 clinical isolates of epidemic 872 
clones (25) included in our strain collection. (D) Survival of epidemic clones within wildtype 873 
(WT) or isogenic F508del knock-in THP1 macrophages at 2 and 4h post infection, expressed 874 
as fold change from 1 hour post infection showing median and interquartile range (IQR; 875 
boxplots), 1.5 times IQR range (whiskers. Experiments (carried out at least in duplicate) were 876 
performed by exposing THP1 macrophages to pooled isolates of 51 clinical isolates at a 877 
multiplicity of infection (MOI) of less than 1. Viable bacteria were isolated from macrophages 878 
at time points indicated and grown on solid media. Isolate abundance was quantified using 879 
sequence-based deconvolution. Strains with less than 1% abundance at the 1h time point 880 
were excluded from the analysis. A difference in the abundance of ST27 strains vs ST111 and 881 
ST235 strains at the 4h timepoint was assessed using a two-tailed t-test. * p-value < 0.05, ** 882 
p-value < 0.01. 883 

Figure 3 Activation of the DksA1 regulon contributes to Cystic Fibrosis host preference 884 
of P. aeruginosa clones. (A) Volcano plot visualisation of the Log2-fold expression change 885 
with CF proportion for genes positively controlled (red) and negatively controlled (green) within 886 
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the DskA1 regulon as defined by Fortuna et al. (44). Bulk RNA seq data was analysed from 887 
241 clinical isolates of epidemic clones (24) included in our strain collection. (B) DksA1 888 
promotes survival of P. aeruginosa within CF macrophages. Viable intracellular P. aeruginosa 889 
(quantified through enumeration of cell-associated colony forming units; CFU) were measured 890 
at 1h and 4h post infection of differentiated wildtype (WT) and isogenic F508del homozygous 891 
knockin (CF-F508del) THP1 cells with wildtype (blue), isogenic DskA1-DskA2 double 892 
knockout (DDksA1,2; pink), and knockout complemented with DksA1 ((DDksA1,2::DksA1; 893 
yellow) P. aeruginosa PAO1. Data (mean ± SEM) are representative of at least three 894 
independent experiments performed in at least triplicate. *** p < 0.001; ns not significant (two-895 
tailed Student’s t-test). (C) (B) Top: Cartoon of zebrafish (created with BioRender.com) 896 
illustrating injection site for GFP-labelled fluorescent P. aeruginosa. Bottom: Representative 897 
fluorescence and DIC images of whole infected zebrafish larvae at 1 day post-infection (Scale 898 
bar: 150 μm; the labelled yolk sac is autofluorescent). (D) Survival analysis of control (top) and 899 
cftr morphant (cftr MO; bottom) zebrafish larvae infected intravenously (250-350 CFU) with P. 900 
aeruginosa PAO1 wildtype (blue), DDksA1,2 knockout (pink), and DDksA1,2::DksA1 901 
complemented (yellow) fluorescent strains plotted as the percentage of surviving animals over 902 
6 days (average of 2 independent experiments; n = 30-38 fish for each condition); *** p < 0.001 903 
(Mantel-Cox Log-rank test). (E) Viable P. aeruginosa in zebrafish larvae at Day 1 post infection 904 
with P. aeruginosa PAO1 wildtype (blue), DDksA1,2 knockout (pink), and DDksA1,2::DksA1 905 
complemented (yellow) fluorescent strains (plotted as mean ± IQR colony forming units (CFU) 906 
per fish of at least 3 independent experiments; n = 15-20 larvae per condition. *** p < 0.001; 907 
ns not significant (two-way ANOVA with Tukey’s post-test). (F,G) Control and cftr morphant 908 
zebrafish larvae with mCherry-labelled macrophages (Tg(mpeg1:mcherry-F)ump2 (45)) were 909 
intramuscularly infected with 250-350 GFP-labelled P. aeruginosa PAO1 wildtype, DDksA1,2 910 
or DDksA1,2::DksA1 strains) and the infection tracked using real-time intravital confocal 911 
microscopy. (F) Representative 3D reconstruction of confocal imaging showing macrophages 912 
(red) and automatic classification of extracellular (grey) and intracellular (green) P. aeruginosa 913 
(Scale bar 10 μm). (G) Quantification of the number of infected macrophages at the site of 914 
injection (left) and the level of intracellular bacterial load (calculated by the volume of bacteria-915 
associated fluorescence observed within each macrophage) at 6 hours post infection with P. 916 
aeruginosa PAO1 wildtype (blue), DDksA1,2 knockout (pink), and DDksA1,2::DksA1 917 
complemented (yellow) fluorescent strains. Mean ± IQR of at least 54 cells per condition (from 918 
n = 4-6 larvae) recorded from 2 independent experiments. ** p < 0.01; *** p < 0.001; ns not 919 
significant (two-way ANOVA with Tukey’s post-test).  920 

Figure 4 Host-specific pathoadaptation of P. aeruginosa (A) Manhattan plot showing 921 
nominal p values (plotted as -Log10) from genome-wide mutational burden test across all 922 
genes in P. aeruginosa PAO1. Significance was assessed using a Poisson test comparing the 923 
expected and observed number of mutations in each gene accounting for the proportion of 924 
genomes that gene was found in the pan-genome (FDR = 0.1; genes with a significant 925 
mutational burden, termed pathoadaptive, shown in black, others in grey). (B) UMAP 926 
projections of host adaptation of isolates (based on acquired mutations in pathoadaptive 927 
genes) colour-coded by (left) number of pathoadaptive mutations and (right) type of infection 928 
(centroids denoted by larger dots). Isolates without any pathoadaptive mutations were 929 
removed from the analysis. (C) Protein-protein interaction network for the pathoadaptive 930 
genes extracted from the STRING database (only main connected component shown, full 931 
graphs shown in Fig. S12; (56)). Genes are shown as nodes which are connected by an edge 932 
if they had an interaction reported in STRING (confidence > 0.7). Top: To estimate host-933 
specific pathoadaption, the number of cystic fibrosis (CF) vs non-CF mutations (determined 934 
by stratifying mutations in pathoadaptive genes on terminal branches by the infection type of 935 
isolates) were compared using a Fisher exact test (FDR = 0.1) and expressed as an odds ratio 936 
for each gene. Bottom: Gene nodes were colour-coded by class of functional annotation 937 
(based on overrepresented pathways using Gene Ontology (89) biological process enrichment 938 
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analysis with TopGO (57) among CF: transmembrane transport and fatty acid biosynthesis, 939 
and non-CF: transcriptional regulation and chemotaxis).  940 

Figure 5. Evolutionary trajectories of P. aeruginosa during pathoadaptation. (A) 941 
Normalised frequency of mutations over evolutionary time in specific pathoadaptive genes. 942 
The trajectories of the 50 most commonly mutated genes were manually assigned to one of 5 943 
classes (Figure S15), based on the shape of their mutation frequency curves (relative size of 944 
each class and representative examples (with trendlines from locally-weighted smoothing) 945 
shown). (B) The relative transmissibility and host-specific adaptation of pathoadaptive genes 946 
was calculated. To estimate host-specific pathoadaptation, the number of cystic fibrosis (CF) 947 
vs non-CF mutations (determined by stratifying mutations in pathoadaptive genes on terminal 948 
branches by the infection type of isolates) were compared using a Fisher exact test (FDR = 949 
0.1) and expressed as an odds ratio. To assess the transmissibility of pathoadaptive changes, 950 
the number of mutations that had been observed in at least two isolates were compared with 951 
mutations that had only been observed once using a Fisher exact test (FDR = 0.1). Genes 952 
were colour-coded if showing significant host-specific adaptation (blue), changes in 953 
transmissibility (purple), or both (pink). Genes with zero or infinite odds ratio not shown.  (C) 954 
Functional annotation of pathoadaptive genes associated in (top) host-specific adaptation and 955 
(bottom) changes in transmissibility. (D) The number (top) and proportion (bottom) of 956 
transmission links across a range of pairwise SNP thresholds occurring between CF to CF 957 
(red), CF to non-CF (yellow), and non-CF to non-CF (blue) individuals (data were down-sized 958 
to contain equal numbers of CF and non-CF infections). (E) Transmission clusters involving 959 
patients with CF (red), non-CF (blue), or unknown status (white). Nodes representing isolates 960 
were connected by edges if pairwise SNP distances were 26 SNPs or less. This cut-off 961 
represents the 95th percentile of the within-host genetic diversity analysed in 81 patients.  962 
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MATERIAL AND METHODS 

Genomic datasets 

Published datasets: We utilized the following Pseudomonas aeruginosa whole genome 
sequencing datasets: from studies of antibiotic resistance in healthcare setting in Germany (1), 
Spain (2), the Philippines (3), and world-wide (4); from studies of infection in individuals with Cystic 
Fibrosis (CF) from Denmark (5) and Canada (6) and with non-CF bronchiectasis from the UK(7); 
from the International Pseudomonas Consortium (8); and from studies targeting high-risk clones 
ST274(9), ST111(62), and the Liverpool Epidemic Strain (LES)(63).  
Unpublished datasets: P. aeruginosa isolates from the TeleCF study: TeleCF (NCT01877707) 
was a single-centre, observational pilot study of home monitoring in adults with CF (n = 9) who 
were chronically infected with P. aeruginosa and had experienced at least two acute pulmonary 
exacerbations in the prior 12 months. Participants collected spontaneously expectorated sputum 
daily for 6 months in dedicated study freezers provided in their homes. Samples were collected 
and then thawed to room temperature, treated with an equal volume of 0.1% dithiothreitol, 
vortexed, incubated at room temperature for 15 minutes, and then vortexed again to ensure 
homogeneity before being streaked to purity and grown on Pseudomonas selective agar base 
prepared plates with cetrimide and sodium nalidixate supplement (PCN agar; Oxoid). Plates were 
incubated at 37°C for 48-72 h, to allow for the growth of slow-replicating and small colony variants. 
Representative colonies were placed into a 96-deep well microplate containing 1 mL of cetrimide 
broth, and grown for 6 hours at 37°C. These strains were then re-streaked for purity and grown 
on PCN plates at 37°C for 48-72 hours. Single colonies were chosen and re-arrayed into individual 
96-deep well microplates, one microplate per initial sputum sample, and left to undergo static 
incubation at 37°C for a further 6 hours. To ensure minimal adaptation to the laboratory 
environment, the strains were stored at -80°C in 25% (v/v) glycerol solution for long-term 
preservation. DNA was extracted from the strains using a QIAxtractor (QIAgen) instrument, 
following the manufacturer’s instructions. The Illumina protocol was used for library preparation, 
and sequencing was conducted on both the Illumina HiSeq 2500 and X10 platforms.  
P. aeruginosa isolates from bacteraemia infections (n = 365): 224 isolates were cultured from 
bloodstream infections from patients attending Addenbrookes, Hinchingbrooke, and Papworth 
Hospitals (UK) between 2006 and 2013 with a further 60 isolates collected between 2017 and 
2018. 81 isolates were collected as part of the BSAC bacteraemia resistance programme (89) 
from 25 contributing laboratories distributed across the UK and Ireland between 2001 and 2011 
focusing on multi-drug resistant strains. DNA was extracted using QIAxtractor (QIAgen), 
according to the manufacturer’s instructions. Library preparation was done according to the 
Illumina protocol, and samples were sequenced on the Illumina HiSeq 2000 and 2500 platforms.  

Variant calling  
Sequencing reads from all samples analysed were mapped against the P. aeruginosa PAO1 
reference genome (accession number AE004091.2) using the multiple_mappings_to_bam 1.6 
pipeline with default parameters (https://github.com/sanger-pathogens/bact-gen-scripts) with 
BWA (90) as the short-read aligner including an indel realignment step using GATK (91). Samples 
where less than 70% of the reads mapped to the reference genome were removed.   
SNPs and indels were identified from the aligned reads using the same pipeline employing 
samtools mpileup (92) for generating read pile-ups and bcftools call (92) for variant identification. 
Variants were filtered by base call quality (>=50), mapping quality (>=20) and number of 
supporting reads (>=8) on the reverse strand (>=3) and the forward strand (>=3). Indels across 
strains were aggregated into a catalogue and the base at the start of every indel in the catalogue 
was quality checked as above.  

https://github.com/sanger-pathogens/bact-gen-scripts
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We removed samples with an excess number of minority variants as they likely indicate strain-
level contamination. Variants were filtered to identify minority variants using a previously 
described approach (93).  Subsequently every sample with more than 8 minority variants was 
removed. Ariba 2.14.6 (64) was used to query the genomes using the multi-locus sequencing type 
scheme for P. aeruginosa (28) for the allele-sequence type combinations as available on 
pubMLST (94) (downloaded on Nov 11 2020). Ariba also identifies new allelic combinations. 
Samples where the sequence type could not be determined with Ariba were removed (n = 7). The 
oldest sample was chosen to represent every patient sequence type combination to minimise bias 
from within-host evolution. SNP-sites (66) was used to infer an alignment of the variable sites. 
FastTree (2.1.10) was used to infer a global phylogenetic tree (67). Ggtree was used to visualise 
the trees and produce figures (69). 

Clone assignment 

The sample with the earliest collection date in each sequence type was chosen to represent every 
patient-sequence type combination to minimise bias from within-host evolution.  PairSNP (Version 
0.2.0) (https://github.com/gtonkinhill/pairsnp) was used to infer all pairwise SNP distances 
between sample pairs. The ultra-metric pairwise group method with arithmetic means (UPGMA) 
was used to cluster samples based on pairwise SNP distances. UPGMA infers a sample 
dendrogram which is then separated into clusters by applying a discrete SNP distance threshold. 
A global threshold of 7000 SNPs was chosen to separate the dendrogram into genomic clusters 
(which we refer to as clones). This threshold was selected to assign all samples from any recently 
emerged clones into the same cluster while at the same time being liberal enough to allow recently 
emerged recombinants and hypermutators to be clustered within their ancestral clones 
(Supplementary Figure 1).  Samples with the same patient-sequence type combinations that were 
not included in the clustering were then assigned to the matching clone type.   
SNP-sites was used to infer a clone-specific alignment of variable sites (69). Gubbins version 
2.4.1 (68) was used to remove recombination for individual clones with at least four available 
genomes. Gubbins infers a phylogenetic tree with RaxML (69) based on the final alignment. 

Dating and phylogeography 

Molecular dating was performed for all 21 epidemic clones separately including genome 
sequences with known collection dates and including only the earliest sample from each patient. 
To identify potential hypermutator branches that would violate the molecular clock assumption, 
the ratio of transition and transversion mutations was compared using a Fisher exact test. P-
values were corrected using the Benjamini-Hochberg procedure at an FDR threshold of 5%. We 
initially assessed the temporal signal in each epidemic clone. We reconstructed a non-dated 
phylogenetic tree using RAxML 8.2.12 (70) with the general time reversible (GTR) model of  
nucleotide substitution and gamma rate heterogeneity with four gamma classes  and compared 
sequence collection dates with root-to-tip distances using TempEst (71). Sequences that had 
accumulated far more or fewer mutations than expected given their collection date were removed 
from further analyses and a new phylogenetic tree reconstructed as above. To assess the 
significance of the temporal signal in each epidemic clone, we compared the correlation 
coefficient between collection date and root-to-tip distance with the real sequence dates with the 
distribution of correlation coefficients from 1000 date randomisations using a custom script 
(https://github.com/chrisruis/tree_scripts/blob/ main/bootstrap_TempEst_ rttd_date.R). Clones 
with a significant temporal signal in this test (P < 0.05) were taken forward for molecular dating 
with BEAST 2.6.6 (72). We employed the HKY model of nucleotide substitution. We used an 
uncorrelated relaxed lognormal clock model with a lognormal prior on the mean substitution rate 
with mean set to the slope of the root-to-tip correlation calculated above and standard deviation 
set to 0.5. The variation in substitution rate across branches was modelled using a gamma prior 

https://github.com/gtonkinhill/pairsnp
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with alpha set to 0.54 and beta set to 0.38. We modelled the population history using the 
coalescent Bayesian skyline population prior. Three independent runs were conducted for each 
dataset with 100M steps; convergence was assessed with Tracer 1.7.1 (72) with 10% burn-in. 
For clones that didn’t pass the bootstrap randomisation test (N = 9), a uniform prior for the 
substitution rate was set encompassing values across the 95% HPD estimates for the substitution 
rates inferred for the above clones. All other priors and parameters were kept the same.  
To further establish a temporal signal in epidemic clone that passed the root-to-tip randomization 
test above, we ran a more thorough date randomisation test (73). Here, BEAST was run using a 
uniform prior with upper and lower bounds set to encompass the full range of substitution rates 
inferred previously for the clones above and all other priors set as before. The estimates from 
those BEAST runs were highly similar to the estimates obtained with the informed substitution 
rate prior. We then performed ten randomization runs where collection dates were randomized 
across sequences and BEAST run using the same uniform prior on substitution rate. The 
estimated median substitution rates and most recent common ancestor dates for the 
randomization runs did not overlap with those of the runs using real collection dates, indicating a 
significant temporal signal. 
To test whether each epidemic clone has undergone a historical population expansion, we 
analysed Bayesian skyline plot estimates of relative genetic diversity across the posterior 
distribution. We inferred whether each sampled step in the MCMC chain exhibits an increase in 
relative genetic diversity of at least twofold relative to the root of the tree and examined the 
distribution of dates of this increase; median and 95% HPD estimates were calculated for each 
clone. 
Prior to conducting Bayesian phylogeographic analyses, the association index was computed to 
find evidence of geographic clustering within clone phylogenies (95–97). Based on randomly 
permuting the locations 1,000 times, we identified clones for further spatiotemporal analysis 
where less than 5% of the randomisations had a higher association index than the non-permuted 
dataset. Samples from the same clone were subsampled to keep only one sequence for every 
cluster of genetically related samples from the same city to account for regional outbreaks. In 
addition, locations only containing one sample within a clone were removed from the analysis of 
that clone. 
Asymmetric phylogeographic discrete trait reconstructions were performed using the BEAST 
classic 1.9.0 package of BEAST 2.6.6 (38). The continent was used as the label for each sample. 
The same priors were used as above including an informed log-normal substitution rate prior and 
Bayesian Skyline prior on the population size. Additionally, an exponential prior was employed for 
the rate of lineage movements with mean 1. The relative rates of migration between continent 
pairs were modelled with a gamma distribution with alpha and beta set to 1. To assess the 
robustness of our approach in the light of overrepresentation of certain continents, we 
subsampled the sequences of the most frequent continent so that the two most frequent 
continents were equally abundant. Subsampling was repeated five times and results compared 
between subsamples. Spread 0.9.7.1 (97) was used to identify migration routes between 
continents. We only reported routes that had a Bayes factor of at least 3 in both the full sample 
and in at least four out of five subsamples. 

Pan-genome analysis 

Genomes were assembled from short-read data using the Velvet or SPAdes assembler using the 
Assembly Improvement pipeline (98). Where several assemblies were available, the assembly 
with the fewest contigs was selected. Where the number of contigs exceeded 500 or less than 
3000 genes were predicted (as determined by panaroo-qc), Shovill 1.1.0 
(https://github.com/tseemann/shovill) was used to re-assemble the genome. Panaroo 1.2.8 with -
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--clean-mode moderate (99) was used to cluster the gene sequences from all samples into gene 
families and infer a graphical pan-genome (for every patient-clone combinations the earliest 
sample was used).  
Parsimony reconstruction was used to infer the presence or absence of each gene in the common 
ancestor at the root of each clone tree. We then picked the genome that was most similar to the 
ancestral genome in terms of gene presence and absence as the ancestral epidemic clone 
representative. The genome graph was then reduced to a random subset of the sporadic clones 
(N = 50) and epidemic clone representatives (N = 21). The graph was then ordered against the 
genome of Pseudomonas aeruginosa PAO1 and any long-range connections (>100 genes 
distance) were cut as described previously (100). yFiles 1.1.1 (https://www.yworks.com/products/ 
yfiles) was then used to infer a layout in Cytoscape 3.8.2 (75) for visualisation. An outgroup-rooted 
tree was inferred based on the clone representative genomes using FastTree (2.1.10) employing 
the PA7-type isolate strain AZPAE14941 as the outgroup. Using the reduced pan-genome, 
parsimony ancestral character state reconstruction was used to infer gene gains and losses on 
the branches of the rooted tree leading to the ancestral epidemic and sporadic clones. Co-gained 
genes were then aggregated into events based on the phylogenetic context. EggNog-mapper 
2.1.6 (76) was used to annotate the gene family of each gene in each event using the 
representative sequence for the corresponding gene families from Panaroo.  
A Fisher exact test was conducted to compare the number of genes gained and annotated with a 
specific COG category. Multiple-testing correction was applied to account for the number of tests 
(the number of COG categories) using the Benjamini-Hochberg method to control the false 
discovery rate at 10%. 

THP1 F508del cell line 

Isogenic F508del homozygous THP1 cells were created as follows: Alt-R® CRISPR-Cas9 (S.p. 
HiFi Cas9 Nuclease V3; crRNA; and tracrRNA), and ssODN HDR donor template (Ultramer® 
DNA Oligos) were purchased from Integrated DNA Technologies (IDT). Genotyping PCR primers 
were obtained from Eurofins Genomics.  
Ribonucleoparticles (RNP) assembly and electroporation of the gene editing reagents were 
performed as previously described (76).  Briefly, the 100uM stocks of crRNA and tracrRNA were 
combined at equimolar concentrations for a final duplex concentration of 44 μM, incubated at 95 
oC for 5 min, and then allowed to cool down to room temperature. The crRNA:tracrRNA complex 
was combined at a 1:1.2 molar ratio with Cas9 nuclease protein and incubated for 20 min to form 
the RNP complex. THP-1 cells were electroporated using the Neon™ Transfection System 
(Thermo Fisher Scientific) and the Neon™ Transfection System 10 μl kit. For each electroporation 
reaction, 100,000 cells were resuspended in 5 μl of Buffer R, mixed with 7 μl of RNP complex, 
and electroporated with 300 ng ssODN HDR donor template. For the co-transfection of RNP and 
ssODN HDR donor template, ssODN HDR donor was added to the RNP:cells mixture before the 
electroporation step. The cells were seeded in a 24-well plate and 72 h after electroporation 
editing efficiency was evaluated.  
After electroporation, cells were harvested for genomic DNA (gDNA) extraction using the DNeasy 
Blood and Tissue Kit (Qiagen). The target site was amplified using Q5 Hot Start High-Fidelity 2x 
Master Mix (New England Biolabs), PCR products were purified, and Sanger sequenced (Eurofins 
Genomics). The gene editing events were analysed using the Sanger sequencing files from 
unedited and edited cells as input into the Inference of CRISPR Edits (ICE) web tool (2019, v2.0. 
Synthego). 

 

https://www.yworks.com/products/
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THP1 infection assay 

Wild type (WT) and F508del THP-1 cells were cultured in RPMI-1640 (Invitrogen) medium 
supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen), 100U/mL penicillin and 
100ug/mL streptomycin (Sigma), in 5% CO2 humidified atmosphere at 37 oC. THP-1 monocytes 
were seeded at 200,000 cells/mL in 24 well tissue culture plates (Corning), and differentiated into 
macrophages in the presence of 20 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma–Aldrich) 
for 48 hours followed by a recovery period of 24 hours in serum-supplemented RPMI-1640 
medium without PMA (as previously described (77)). Cell differentiation was verified by detection 
of morphology changes using light microscopy. 
Pooled clinical isolates of P. aeruginosa were cultured in low-salt LB (Thermo Fisher) at 37 oC 
with aeration at 200rpm overnight, resuspended in RPMI-1640 supplemented with serum and 
then added to differentiated WT or F508del THP-1 cells at a multiplicity of infection (MOI) of 1:1, 
centrifuged at 1800rpm for 3 minutes, and then incubated at 37 oC for 1 hour before the 
supernatant was removed and cells were lysed (using 2% Saponin) at 1h time point or incubated 
in fresh media for further time points (2h or 4h) before supernatant removal and cell lysis. DNA 
was extracted using the QiaAmp DNA mini kit (Qiagen).  
Strain abundance was quantified using mSWEEP 1.4.0 sequence-based deconvolution method 
(78). First, we built an index using the 51 input genomes using the build_index command. The 
reads for every sample were then pseudoaligned to the index using the pseudoalign command. 
Finally, the abundances of the strains in our samples were estimated by running the mSWEEP 
command. Strains with less than 1% abundance at the 1h time point were excluded from the 
analysis. A difference in the abundance of ST27 strains vs ST111 and ST235 strains at the 4h 
relative to the 1h timepoint was assessed using a two-tailed t-test. 
Mutant ΔdksA1-2 and complemented ΔdksA1-2::DksA1 P. aeruginosa were cultured in Luria-
Bertani medium (LB, Thermo Fisher) supplemented with 100ug/ml tetracycline, and PAO1 was 
incubated in LB only at 37 oC with aeration at 200rpm overnight.  
Bacterial suspensions in RPMI-1640 supplemented with serum were added to the differentiated 
WT and F508del THP-1 cells at a multiplicity of infection (MOI) of 1:1, centrifuged at 1800rpm for 
3 minutes and then incubated at 37 °C for 1 hour.   THP-1 cells were lysed at timepoints 1 hour 
and 4 hours using 2% Saponin (Sigma) and colony forming units were calculated by plating the 
lysates on LB agar. 

Transcriptomic analysis  

Gene expression data for clinical P. aeruginosa strains (and the UCBPP- PA14 wildtype control 
strain) was obtained as described previously (47). Briefly, strains were grown in LB broth at 37 °C 
and harvested at late log phase (OD600 = 2). Sequencing was done on an Illumina HiSeq 2500. 
Expression data were pseudoaligned to strain-specific gene indices to produce abundance 
estimates using Kallisto (78) and orthologous genes present in 99% of strains, as determined by 
Panaroo as above, were retained for downstream analysis. Expression levels for missing genes 
were imputed with 0 values. Abundance estimates were scaled to the median length of each 
ortholog across strains. Length-scaled abundance estimates `were size-factor normalised by the 
median ratio method and modelled as a response to CF proportion per sequence type using a 
negative binomial generalised linear model (GLM) with DESeq2 (79). The coefficients for gene 
models were assessed using the Wald test, and the resulting p-values were corrected using the 
Benjamini-Hochberg method. Genes with adjusted p-values < 0.05 were considered to be 
significantly associated with CF proportion. 
To assess the distribution and clustering of transcriptional diversity of strains with respect to CF 
proportion, we used k-means clustering on the principal components (PCs) of the gene 
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expression data. We performed clustering using a range of k values and chose k = 20 because it 
was associated with a relatively low within-cluster sum of squares (WCSS) and reasonable cluster 
sizes (mean cluster size = 12). We ran the algorithm 100 times with different initial centroids and 
used the initial centroid placement which minimised the WCSS. We then calculated the mean 
standard deviation (!) of the CF proportion by cluster (mean ! = 0.135). Next, we randomly 
sampled the CF proportions per strain and re-calculated the mean ! each time, repeating this 
process 10,000 times in total. An empirical P value was calculated as the fraction of random 
samples with mean ! at least as low as that observed with our actual data. Since no random 
samples had mean ! as low as our actual observed value (smallest mean ! = 0.14), the empirical 
P is < 1 × 10-4. 
Zebrafish infection experiments  

Zebrafish lines: Experimental procedures were performed using the wild type AB line and the 
knockout cftrsh540 mutant (101). Macrophage activity was evaluated using the 
Tg(mpeg1:mcherry-F)ump2 line harboring red macrophages (102). For zebrafish anesthesia 
procedures, larvae are immersed in a 0.168 mg/mL Tricaine (Sigma-Aldrich) solution in fish water. 
When required, larvae were cryo-anesthetized by incubation on ice for 10 min then euthanized 
using an overdose of Tricaine (0.500 mg/mL). 
Morpholino injection: Morpholino were purchased from Gene Tools. The morpholino for cftr 
knockdown (5’-GACACATTTTGGACACTCACACCAA-3’) were prepared and injected into one-
cell-stage as previously described (80). A standard morpholino control (5'-
CCTCTTACCTCAGTTACAATTTATA-3') was used as a negative control. 
Generation of fluorescent Pseudomonas aeruginosa strains: Plasmids were obtained from 
Addgene. P. aeruginosa GFP+ strains were obtained by triparental mating, using an E. coli strain 
containing the plasmid pRK2013 (79, 81) as helper strains and an E. coli containing pMF230 (82) 
as the donor strain. GFP+ colonies were selected on LB agar plates complemented with 
carbenicillin 300 μg/ml and 5 μg/ml tetracycline (LBCarb/Tet) (Sigma-Aldrich). 
Pseudomonas aeruginosa inoculates and microinjection into zebrafish embryos and larvae: P. 
aeruginosa expressing GFP were grown using LBCarb/Tet medium. To prepare P. aeruginosa 
inoculates, 1 ml of LBCarb/Tet medium was inoculated with a single colony of bacteria and 
incubated at 37°C overnight with shaking. 50 µl of this overnight culture was then added to 5 ml 
of LBCarb medium and incubated at 37°C with shaking to mid-log phase (OD600 0.6-0.8). P. 
aeruginosa were next harvested by centrifugation and resuspended in a volume of PBS 
(GibcoTM, Thermo Fisher ScientificTM). Then bacterial suspensions were homogenized with a 
26-gauge needle and resuspended at an OD600 of 1 in PBS, then kept on ice until zebrafish 
infection challenges. Systemic infections were carried out by the microinjection of P. aeruginosa 
into the caudal vein of 30 hours post-fertilization (hpf) zebrafish embryos as described earlier (48) 
with some modifications. Briefly, tricaine-anaesthetized embryos were infected individually with 
1-2 nl P. aeruginosa inoculate (≈250-350 colony forming units (CFU)). Inocula were checked a 
posteriori by microinjection onto LB agar plates. Survival post P. aeruginosa infection was 
assessed daily by counting dead embryos (no heartbeat) up to 6 days.  
Zebrafish whole bacterial burden analysis: Growth of P. aeruginosa in vivo was assessed by CFU 
analysis at 1 day post-infection (dpi). To determine CFU, groups of five larvae were anesthetized, 
collected, euthanized and transferred individually into microfuge tubes with 1% Triton X-100 
(Merck Millipore) in PBS. Larvae were then mechanically homogenized using a micro pestle 
(Eppendorf), washed to removed Triton and resuspended in PBS. 10-fold serial dilutions were 
plated on LB agar plates and incubated overnight at 37°C prior to CFU counts.  
Zebrafish macrophage activity and Intra-macrophage bacterial burden analysis: Macrophage 
response was elicited through infection of P. aeruginosa expressing GFP into the muscle 
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compartment of anesthetized Tg(mpeg1:mcherry-F)ump2 larvae at 3 dpf as previously described 
(39). Macrophage chemotaxis and phagocytosis was evaluated by assessing the number of cells 
and/or infected cells at infection sites using confocal microscopy. Macrophage chemotaxis was 
determined at 2 hours post-infection (hpi), and phagocytosis at 4 hpi. Intra-macrophage P. 
aeruginosa loads, which reflects the bacterial killing, were assessed by quantifying the volume of 
bacteria inside macrophages at 6 hpi using confocal microscopy.  
Zebrafish Microscopy, Image Processing and Analysis: Bright-field and fluorescence microscopy 
of infected embryos/larvae were performed using an Olympus MVX10 epifluorescent microscope 
equipped with a X-Cite120Q (Lumen Dynamics) 120-W mercury light source. Images were 
acquired with a digital color camera (Sony MiC5 Pro) and processed using CellSens (Olympus). 
Confocal fluorescence microscopy was performed using an ANDOR CSU-W1 confocal spinning 
disk on an inverted NIKON microscope (Ti Eclipse) and 20x/NA 0.75 air and 40x/NA 1.15 water 
objectives. Images were acquired with a W&B Zyla 4.2 camera (ANDOR) and processed using 
IQ3 3.6.5 software (ANDOR).  
Overlays of fluorescent and DIC images and 2D reconstructions of image stacks were assembled 
using FIJI freeware. 3D reconstitution was produced using Imaris 9.0 software (Bitplane). 

Mutational burden analysis 

PAO1-rooted clones trees were used a input to Treetime 0.8.1 (102) to infer a maximum likelihood 
ancestral character state reconstruction of every nucleotide position. We then implemented a 
pipeline (https://github.com/aweimann/PhyloEffects) to identify single nucleotide changes and 
annotate variant effect in their phylogenetic context using the gene annotation from 
Pseudomonas.com (PAO1 107) (103) and the ancestral character state reconstructions. 
Parsimony ancestral character state reconstruction was used to infer ancestral insertions and 
deletions. Only unique insertions or deletions were kept. SNPeff version 4.3.1 (55) was used to 
annotate the effect of indels on gene function.  
We performed a mutational burden test assuming a Poisson distribution of the mutational burden 
per gene. We compared the observed number of non-synonymous SNPs and indels within a gene 
across all clones with the expected number of variants in that gene based on the total number of 
variants across all clones. Panaroo (35) was used to estimate the prevalence of every orthologous 
gene family and infer an adjusted number of expected variants. Multiple-testing correction was 
used to account for the number of tests (namely the number of genes in the reference genome 
PAO1) using the Benjamini-Hochberg method (76) to control the false discovery rate at 5%. The 
224 genes passing the adjusted p-value threshold were used to query the STRING 11.5 database 
(77) of protein-protein interaction. STRING reports the statistical significance of the number of 
interactions found among the input set of genes compared with the number of expected 
interactions by chance. 
Pathoadaptive genes were assigned to 17 functional categories based on the gene products 
description on Pseudomonas.com (78) (Figure S1). Genes across the PAO1 genome were also 
stratified by whether they had an assigned gene product name. A Fisher exact test was used to 
compare the number of assigned with the number of unassigned genes among pathoadaptive 
genes and non-hits. 

Genotype-TF regulon analysis 

To assess the association between genetic variants and the expression of transcription factor 
(TF) regulons, gene expression data from (86) were pseudoaligned to strain-specific gene sets 
using Kallisto (104). Sample-specific size scaling factors for normalisation were derived from core 
gene expression using DESeq2 (84) and size-scaled counts were log2 transformed for variance 
stabilisation. We performed binary scoring of TFs based on the presence (1) or absence (0) of 

https://github.com/aweimann/PhyloEffect
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missense, nonsense or INDEL variants. The normalised expression levels of TF regulons were 
compared between strains with and without genetic variants using Welch’s two-sample t-tests. P-
values from t-tests were adjusted using the Benjamini-Hochberg method. 
 
Phenotyping of pathoadaptive gene transposon mutants 

PAO1 mutants with transposon insertions in 154 pathoadaptive genes (selected from the Manoil 
library (85) were arrayed in 96 well plates containing 120ul of no-salt LB broth. Plates were 
incubated overnight at 37C in a static incubator, after which, DMSO was added to a final 
concentration of 5% and plates were stored at -80°C. For all assays performed on arrayed 
mutants, the inoculum was in the form of a fresh over-night culture from the frozen stock plate. All 
agar plate-based phenotyping assays were performed in duplicate Plus Plates (Singer 
Instruments) that were inoculated using the ROTOR and 96-Long re-pads (Singer Instruments). 
Results from all agar plate assays were imaged using the Phenobooth Imager (Singer 
Instruments).  
Swimming motility: the inoculum was stabbed through the agar until the pins contacted the base 
of the plate resulting in a column of bacteria within the agar layer. Agar plates were incubated at 
37°C for between 4 and 6 hours for the formation of an opaque halo surrounding the point of 
inoculation which was indicative of swimming motility.  
Twitching motility: Plus Plates were filled with 12.5ml of low salt LB with 1.5% agar to create a 
thin, even layer of agar on the bottom of the plate. Inoculum was stabbed through the agar layer 
into the plastic-agar interface by increasing the pressure applied by the pins on the ROTOR to 
100%. Plates were incubated at 37°C for 6 hours under humid conditions, after which they were 
treated for 30 minutes with chilled TM developer solution (40% methanol and 10% acetic acid) at 
room temperature. Liquid was decanted from the plates and the agar layer was carefully removed 
to expose the adherent growth on the plastic of the plate. Plates were allowed to air dry which 
caused the halo to turn white and become more visible and easier to visualise using the 
Phenobooth.  
Siderophore production: Chrome-azurol (CAS) agar for assaying siderophore production was 
produced as previously (104). To prepare the deferrated cas-amino acid solution, 10g cas-amino 
acids were dissolved in 100ml of sterile distilled water, and 3g 8-Hydroxyquinilone were dissolved 
in 100ml chloroform, the 2 mixtures were combined and shaken for around 10 minutes. After 
shaking, the mixture was transferred to a separating funnel and allowed to rest for 10 minutes. 
The bottom fraction was discarded, and the top layer collected in a fresh bottle containing 100ml 
of fresh chloroform. The process was repeated, and the final eluate was left to rest overnight on 
the bench with the lid loosely attached to allow residual chloroform to evaporate. The deferrated 
cas-amino acids were then filter sterilised and stored at 4°C. All glassware used for the 
preparation of CAS agar was rinsed once with 6M HCl followed by washing three times with sterile 
de-ionised water before use, to eliminate interference. Before the addition of agar, the medium 
was adjusted to pH 6.8 and after autoclaving, the agar was allowed to cool down to 50 °C before 
the addition of blue dye, glucose and deferrated cas amino acids. CAS agar plates were 
inoculated with overnight liquid culture and incubated at 37°C overnight before imaging using the 
Phenobooth. Formation of an orange halo around the point of inoculation indicated siderophore 
activity. 
Caseinase activity: Skim milk agar was prepared by combining sterile, molten tryptic soy agar 
(40g dissolved in 1 litre of water) with sterile 10% marvel milk (50ml per litre of agar). Plates were 
inoculated with overnight culture and incubated at 37°C overnight after which they were observed 
for the formation of a clear halo.  
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Gelatinase activity: Medium consisting of nutrient broth (made according to the manufacturer 
instructions), 1.5% agar and 3% porcine gelatine was dispensed into plus plates.  The 
temperature was maintained at 55°C and the medium was stirred continuously using a magnetic 
stirrer to ensure a uniform distribution of gelatine throughout the medium. Agar plates were 
inoculated with overnight culture and incubated at 37°C for 6-8 hours after which they were stored 
at 4°C overnight to enable the halo to develop fully. After incubation at 4°C, plates were flooded 
with a solution of 4.1M ammonium sulphate and incubated at room temperature to reveal clear 
halos that are the result of gelatine degradation by gelatinase. After 30 minutes, the liquid was 
discarded, and the plates were imaged.  
Rhamnolipid production: Agar was prepared containing Trizma base (14.5g), peptone (10g), 
glucose (5g), NH4Cl (0.7g), KCl (1.5g), MgSO4 (0.39g), ddH2O (1l), adjusted to pH 7.4. before the 
addition of agar (15g) and autoclaving. The agar was then allowed to cool to approximately 50°C 
before it was supplemented with 10ml of sterile CTAB solution and 10ml of sterile methylene blue. 
Agar plates were inoculated with fresh overnight culture and incubated overnight at 37°C. On the 
second day, plates were transferred to 4°C for a further 48 hours to allow halos to develop. 

Impact of amino acid changes on protein stability and structural analysis 

All amino acid changes were analysed with SIFT 4G 6.2.1 (105) using the UniProt90 database 
(84). Since Pseudomonas does not have a pre-computed database, we built our own SIFT 
database using the genome and gene annotations from Pseudomonas.com. All non-synonymous 
mutations were then annotated with the annotator command. FoldX 5 (105) was used to predict 
the difference of total energy between the variant and wild type allele for every variant. AlphaFold 
models were downloaded from Uniprot and the RepairPDB command of FoldX was used to repair 
residues with bad torsion angles or total energy and van der Walls’ clashes (55). The repaired 
PDBs were then used as input to the BuildModel FoldX command. FoldX and SIFT scores were 
then averaged per gene/protein and a two-tailed t-test was used to compare the average scores 
between mutational burden test hits and non-hits. 
Mutational frequencies were mapped on the structural models of the identified hotspot genes 
(algU, ladS, pcnA and betT2) in P. aeruginosa using the Chimera molecular modelling package 
(74). Coordinates for AlgU were downloaded from the Protein Data Bank. Predicted AlphaFold 
models (75) were downloaded from UniProt for ladS, pcnA and betT2. 

Transmission and host selectivity of pathoadaptive mutations 
To assess the transmissibility of pathoadaptive changes, the number of mutations that had been 
observed in at least two isolates (from different patients) was compared with mutations that had 
only been observed once using a Fisher exact test. TopGO 2.4.6 was used for functional 
enrichment analysis of the host-specific Gene Ontology biological pathway annotation compare 
to the background (62) enrichment. Gene Ontology biological process annotations were 
downloaded for the PAO1 strain from Pseudomonas.com (51). 

Mutations in pathoadaptative genes were stratified by the (ancestral) infection type (CF or non-
CF) of every branch based on outgroup-rooted rooted clone trees. To assess host-specific 
pathoadapdation, the number of CF vs non-CF mutations were compared using a Fisher exact 
test. Mutations on branches with non-concordant ancestral infection types were discarded. 
Multiple-testing correction to account for the number of tests (the number of pathoadaptive genes) 
was achieved using the Benjamini-Hochberg method to control the false discovery rate at 10%. 

Pathoadaptive trajectories 

Trajectories were inferred as the sequence of mutations in pathoadaptive genes since the 
emergence of the clone ancestor (random assignment was used where several mutations 
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coincided on one branch) as implied by the PAO1-rooted tree stratified by cystic fibrosis (CF) and 
non-CF infection types. Mutation frequencies were position normalised and the frequency plots 
of the 40 genes with the lowest p-value from the mutational-burden test were manually assigned 
into five groups of genes with similar frequency curve shapes. Trendlines were generated by 
locally-weighted smoothing. 

Transmission analysis 

We established a relatedness cut-off to define potential transmission links using pairwise SNP 
differences between pairs of isolate genomes from the same patient (n = 81 patients). Potential 
hypermutators were removed prior to this analysis as described above. We defined a patient-
level cut-off as the 95th percentile of the distribution of within-host SNP distances for every 
patient as described previously (39). A global cut-off was derived as the 95th percentile of the 
distribution of all patient cut-offs. We then identified potential transmission events as isolates 
from the same clone sampled from different patients that differed by 26 SNPs or fewer. 
Transmission clusters were annotated and laid out using Cytoscape.  
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Figure S1. (A) Relationship between pairwise short nucleotide polymorphism (SNP) 

distance threshold and implied number of genomic clusters. Isolates genomes were 
clustered based on their pairwise SNP distance using the unweighted pair group method with 
arithmetic means (UPGMA). UPGMA infers a sample dendrogram which is then separated into 
cluster by applying a discrete SNP distance threshold. A vertical black line at 7000 SNPs denotes 
the threshold that was chosen to define the genomic clusters (clones; blue) in our dataset. (B) 

Maximum likelihood phylogenetic tree generated from genomes of all study isolates (major 
epidemic clones labelled in red). 
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Figure S2. Emergence dates of epidemic clones. Bayesian inferred phylogenetic trees for all 
epidemic clones with mean and 90% highest posterior density interval estimates of the 
emergence date.  
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Figure S3. Population expansion of epidemic clones. Relative genetic diversity estimates (as 
a proxy for population size) based on Bayesian Skyline plot demographic model were inferred for 
all epidemic clones. 90% highest posterior density intervals are shown in grey. 
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Figure S4. Phylogeography of P. aeruginosa. Left Bayesian inferred phylogeographic trees 
shown for three epidemic clones (i) ST27, (ii) ST17, (iii) ST235. Edges were colour-coded by the 
most probable continent based on the full distribution of trees (N = 27,000). Proportion of trees 
supporting individual continent are shown at nodes. Right Arrows show the statistically-supported 
direction of inter-continental migrations routes (Bayes Factor > 3). Arrows are colour-coded by 
the recipient continent.   
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Figure S5. Gene gain events in epidemic and sporadic P. aeruginosa clones. Proportion of 
acquired genes with functional annotations (based on COG database), inferred by maximum 
parsimony ancestral genome reconstruction within epidemic (red) and sporadic (blue) clones. All 
COG categories with significantly different numbers of acquired genes between epidemic and 
sporadic clones are shown. *  p value < 0.05; ** p value < 0.01; *** p value < 0.001.  
  



 
 

18 
 

 
Figure S6. Further analysis of varying host preference of epidemic P. aeruginosa clones. 
(A) Proportion of cystic fibrosis (CF; red) and non-CF infections (blue) caused by epidemic clones 
also represented in our study data, analysed from data collected as part of a surveillance study 
with UK hospitals between 2010 and 2012 (63). (B) Comparison of CF proportion in individual 
epidemic clones between our study and previous surveillance study (33) (Adjusted R2 = 0.71, p = 
0.01, F-test). (C) Proportion of infections caused by epidemic clones (labelled by their majority 
multi-locus sequence type, ST) in patients with cystic fibrosis (CF; red), non-CF lung infection 
(purple), and non-lung infections (other organ; blue). (D) Comparison of ratio of CF to non-CF 
lung infections compared to the ratio of CF to other organ infections for major epidemic clones 
(Adjusted R2 = 0.72, p = 3.28 x 10-7, F-test).  
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Figure S7. Gene gain events in epidemic clones across the P. aeruginosa CF affinity 

spectrum. Ancestrally-acquired genes were annotated (based on COG database) using 
maximum parsimony ancestral genome reconstruction across ancestral genome representatives. 
Each panel shows the proportion of acquired genes annotated within a specific functional 
category across the CF proportions of the underlying clones. Linear trendlines are shown in blue 
with shaded area in grey denoting the 95% confidence level interval. Adjusted R2 and p-values 
are shown based on fitting a linear model for every category (F-test). 
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Figure S8. Multi-dimensional virulence phenotyping of P. aeruginosa clinical isolates. 

Virulence phenotypes of 49 clinical isolates as determined using a series of phenotypic assays 
(see Method section). (A) Virulence phenotype quantification for each isolate plotted against the 
clonal CF proportion of each clinical isolate. (B) Principal component (PC) analysis of virulence 
phenotype quantification for all tested clinical isolates, visualised using the two principal 
component (PC) axes explaining the most variation (variance explained annotated on the axes) 
based on PC analysis of all virulence factor measurements. Clonal CF proportions annotated for 
each isolate using blue colour scale. 
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Figure S9. Modelling P. aeruginosa infection in zebrafish. (A) Wildtype (grey), cftr knockout 
(cftr -/-; blue) (43) and cftr morphant (cftr MO; red) zebrafish were intravenously infected with 250-
350 colony forming units (cfu) wildtype P. aeruginosa PAO1. Survival analysis of P. aeruginosa-
infected larvae. Data plotted as percentage of surviving animals over 6 days (average of 2 
independent experiments; n=66). *** p < 0.001 (Mantel-Cox Log-rank test). (B) Control and cftr 
morphant zebrafish larvae with mCherry-labelled macrophages (Tg(mpeg1:mcherry-F)ump2 
(44)) were intramuscularly infected with 250-350 GFP-labelled P. aeruginosa PAO1 wildtype 
(blue), DDksA1,2 (pink) or PA01DDksA1,2::DksA1 complemennted (yellow) strains and the 
infection tracked using real-time intravital confocal microscopy. Mean ± SEM (standard error of 
the mean) number of macrophages mobilized to the infected muscle at 2 hours post infection 
(hpi). (n=14 fish; 2 independent experiments). ns non-significant (two-way ANOVA with Tukey’s 
post-test).  
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Figure S10. Predicted impact of mutations on protein function (A) Proportion of mutations 
with low, moderate, and high predicted impact in pathoadaptive (red) or all other (blue) genes 
(other; blue) estimated using SNPeff (52). (B) The estimated impact of missense mutations on 
protein stability predicted by (top) FoldX (59) (*** p = 1.34 x 10-6) or (bottom) protein function 
predicted by Sorting Intolerant from Tolerant (SIFT) (57) analysis (*** p = 9.04 x 10-15) in 
pathoadaptive (red) or all other (blue) genes. (C) Boxplots of pathoadaptive transcription factor 
regulon expression of clinical isolates with variants (green) or no variants (red) (Benjamini-
Hochberg adjusted p-values from a two-sample Welch t-test shown separately for every target 
gene). Observed changes in target expression all consistent with the presence of loss of function 
mutations affecting transcription factors.  
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Figure S11. Functional characterisation of pathoadaptive genes. (A) Histogram of genes with 
known (blue) or unknown (red) function arranged by their adjusted p-value from a Poisson test 
comparing the mutational burden as expected with the observed number of mutations, with 
pathoadaptive genes having adjusted p values of <0.05. (B) (i) Fraction of pathoadaptive genes 
with known (blue) and unknown (red) function. (ii) Number of pathoadaptive genes with (dark 
blue) known functions (across 17 categories) based on prior knowledge or (light blue) 
experimentally determined in this study using sequence-confirmed transposon mutants from the 
Manoil library (64) representing isogenic disruption of 154 of the 224 pathoadaptive genes.   
  



 
 

25 
 

 
Figure S12. Protein-protein interaction networks of pathoadaptive genes. Genes are 
depicted as nodes and connected by an edge if their proteins are known to interact according to 
the STRING database (confidence > 0.7). Protein-protein interaction networks for all 
pathoadaptive genes (A) labelled by gene name or annotated by (B) the odds-ratio of host-specific 
pathoadaptation (assessed by comparing the number of CF vs non-CF mutations using a Fisher 
exact test (FDR = 0.1), or (C) biological process based on Gene Ontology (GO) terms.  
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Figure S13. Examples of structural analysis of pathoadaptive mutations. Examples of 
structural analysis of gene products where mutations are enriched in CF patients (AlgU, PcnA) or 
in non-CF patients (LadS, BetT2). Frequency of mutations (information entropy) were colour-
coded and mapped onto each structure (the most frequent positions were labelled). AlgU, an RNA 
polymerase sigma-H factor known to regulate mucoidy (65), is shown in complex with its negative 
regulator MucA as cartoon and molecular surface representations respectively with mutations 
occurring at the interface between these two proteins. PcnA, a putative nicotinamidase, had 
mutations within the protein core or at sites of protein-protein interaction. LadS, a calcium-
responsive histidine kinase (66), acquired mutations in the N terminal (sensor) and 
transmembrane domains. BetT2 (67), a putative choline transporter, showed helix-breaking 
mutations within its transmembrane domain. Models based on experimentally-derived structures 
(for AlgU, PDB 6IN7) or AlphaFold predictions ( for others).  
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Figure S14. Evolutionary trajectory lengths in P. aeruginosa. Comparison of the lengths of 
evolutionary trajectories between isolates infecting CF (red) and non-CF (blue) individuals. 
Trajectories were inferred as the sequence of mutations in pathoadaptive genes since the 
emergence of the clone ancestor as defined by the mid-point-rooted tree stratified by CF and non-
CF infection types. Evolutionary trajectories were down-sampled to contain an equal number of 
samples from CF and non-CF infections. 
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Figure S15. Frequency of mutations over evolutionary time in pathoadaptive genes. 
Mutation frequencies were position-normalised and the trajectories of the 50 most frequently 
mutated genes were manually assigned to one of five classes of genes with similar frequency 
curve shapes. Trendlines from locally weighted smoothing are shown. X axis shows evolutionary 
time.    
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Figure S16. The relative transmissibility and host-specific adaptation of pathoadaptive 

genes. To estimate host-specific pathoadaptation, the number of cystic fibrosis (CF) vs non-CF 
mutations (determined by stratifying mutations in pathoadaptive genes on terminal branches by 
the infection type of isolates) were compared using a Fisher exact test (FDR = 0.1) and expressed 
as an odds ratio. To assess the transmissibility of pathoadaptation, the number of mutations that 
had been observed in at least two isolates were compared with mutations that had only been 
observed once using a Fisher exact test (FDR = 0.1). Genes were colour-coded (A) by established 
function, (B) based on experimentally-derived functions based on our analyses of corresponding 
transposon mutants, or (C) by the class of mutation frequency change over evolutionary time. 
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Table S1. (separate file) Sample information including infection type, isolate clone type, 
mutational burden, host-specificity and transmissibility test results. 
Table S2. (separate file) Gene families gained with COG functional annotations. 
Table S3. (separate file) Differentially expressed genes across CF proportions. 
Table S4 (separate file) THP1 pooled infection assay DNA sequencing data. 
Table S5. (separate file) Gene mutation stats including number of synonymous and non-
synonymous SNPs, burden test p-value, host-specificity p-value, transmissibility p-value  
Table S6. (separate file) Amino acid variants in LadS, BetT2, PcnA and AlgU. 
Table S7. (separate file) Potential transmission links between patients based on a SNP 
distance threshold of 26 SNPs. 
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