146 research outputs found

    Full antagonist of the IL-7 receptor suppresses chronic inflammation in non-human primate models by controlling antigen-specific memory T cells

    Get PDF
    Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Interleukin 7 (IL-7) is a limiting and potent cytokine produced by epithelial and stromal cells sustaining T-lymphocytes development, homeostasis and cell metabolism. Almost all conventional mature T lymphocytes express the IL-7 receptor (IL-7R), with the exception for naturally-occurring regulatory T-cells (Treg), constituting a rare opportunity to selectively strangle pathogenic effectors while preserving crucial natural regulators. In our recent study, we reported that therapeutic efficacy of antagonist anti- IL-7Rα mAbs in a non-human primate model of memory T cell-induced chronic inflammation depends on recognition of an epitope overlapping the IL-7 binding domain (site 1) and the receptor heterodimerization region (site-2b) (Nat Commun, 9(1):4483). We found that “site-1-only” mAbs prevented IL-7-induced JAK/STAT signaling but induced PI3K and Erk signaling and lacked efficacy in vivo, whereas “site-1 + 2b” mAbs were fully antagonist and demonstrated potent activity to control skin inflammation on the long term. The mechanism of action comprised the neutralization of IFN-γ producing antigen-specific memory T cells, without inducing lymphopenia or polyclonal T-cell functional or metabolic defects as generally observed previously in rodents

    Targeting of vascular cell adhesion molecule-1 by18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques

    Get PDF
    Aims Positron emission tomography-computed tomography (PET-CT) is a highly sensitive clinical molecular imaging modality to study atherosclerotic plaque biology. Therefore, we sought to develop a new PET tracer, targeting vascular cell adhesion molecule (VCAM)-1 and validate it in a murine atherosclerotic model as a potential agent to detect atherosclerotic plaque inflammation. Methods and results The anti-VCAM-1 nanobody (Nb) (cAbVCAM-1-5) was radiolabelled with Fluorine-18 (F-18), with a radiochemical purity of >98%. In vitro cell-binding studies showed specific binding of the tracer to VCAM-1 expressing cells. In vivo PET/CT imaging of ApoE(-/-) mice fed aWestern diet or control mice was performed at 2h30 post-injection of [F-18]-FB-cAbVCAM-1-5 or F-18-control Nb. Additionally, plaque uptake in different aorta segments was evaluated ex vivo based on extent of atherosclerosis. Atherosclerotic lesions in the aortic arch of ApoE(-/-) mice, injected with [F-18]-FB-anti-VCAM-1 Nb, were successfully identified using PET/CT imaging, while background signal was observed in the control groups. These results were confirmed by ex vivo analyses where uptake of [F-18]-FB-cAbVCAM-1-5 in atherosclerotic lesions was significantly higher compared with control groups. Moreover, uptake increased with the increasing extent of atherosclerosis (Score 0: 0.68 +/- 0.10, Score 1: 1.18 +/- 0.36, Score 2: 1.49 +/- 0.37, Score 3: 1.48 +/- 0.38% ID/g, Spearman's r(2) = 0.675, P < 0.0001). High lesion-to-heart, lesion-to-blood, and lesion-to-control vessel ratios were obtained (12.4 +/- 0.4, 3.3 +/- 0.4, and 3.1 +/- 0.6, respectively). Conclusion The [F-18]-FB-anti-VCAM-1 Nb, cross-reactive for both mouse and human VCAM-1, allows non-invasive PET/CT imaging of VCAM-1 expression in atherosclerotic plaques in a murine model and may represent an attractive tool for imaging vulnerable atherosclerotic plaques in patients

    Dietary species richness as a measure of food biodiversity and nutritional quality of diets

    Get PDF
    Biodiversity is key for human and environmental health. Available dietary and ecological indicators are not designed to assess the intricate relationship between food biodiversity and diet quality. We applied biodiversity indicators to dietary intake data from and assessed associations with diet quality of women and young children. Data from 24-hour diet recalls (55% in the wet season) of n = 6,226 participants (34% women) in rural areas from seven lowand middle-income countries were analyzed. Mean adequacies of vitamin A, vitamin C, folate, calcium, iron, and zinc and diet diversity score (DDS) were used to assess diet quality. Associations of biodiversity indicators with nutrient adequacy were quantified using multilevel models, receiver operating characteristic curves, and test sensitivity and specificity. A total of 234 different species were consumed, of which < 30% were consumed in more than one country. Nine specieswere consumed in all countries and provided, on average, 61% of total energy intake and a significant contribution of micronutrients in the wet season. Compared with Simpson's index of diversity and functional diversity, species richness (SR) showed stronger associations and better diagnostic properties with micronutrient adequacy. For every additional species consumed, dietary nutrient adequacy increased by 0.03 (P < 0.001). Diets with higher nutrient adequacy were mostly obtained when both SR and DDS were maximal. Adding SR to the minimum cutoff for minimum diet diversity improved the ability to detect diets with higher micronutrient adequacy in women but not in children. Dietary SR is recommended as the most appropriate measure of food biodiversity in diets

    Targeting TMEM176B Enhances Antitumor Immunity and Augments the Efficacy of Immune Checkpoint Blockers by Unleashing Inflammasome Activation.

    Get PDF
    Although immune checkpoint blockers have yielded significant clinical benefits in patients with different malignancies, the efficacy of these therapies is still limited. Here, we show that disruption of transmembrane protein 176B (TMEM176B) contributes to CD8+ T cell-mediated tumor growth inhibition by unleashing inflammasome activation. Lack of Tmem176b enhances the antitumor activity of anti-CTLA-4 antibodies through mechanisms involving caspase-1/IL-1β activation. Accordingly, patients responding to checkpoint blockade therapies display an activated inflammasome signature. Finally, we identify BayK8644 as a potent TMEM176B inhibitor that promotes CD8+ T cell-mediated tumor control and reinforces the antitumor activity of both anti-CTLA-4 and anti-PD-1 antibodies. Thus, pharmacologic de-repression of the inflammasome by targeting TMEM176B may enhance the therapeutic efficacy of immune checkpoint blockers.Uruguay INNOVA 2, Fondo Maria Viñas and Clemente Estable from ANII, as well as grants from CABBIO, PEDECIBA, ECOS-SUD and FOCEM (MERCOSUR Structural Convergence Fund), COF 03/11 to MH, The Harry J Lloyd Foundation to MRG and the Instituto Nacional del Cancer to YDM, Agencia de Promoción Científica y Tecnológica to GAR and MRG, Fundación Bunge & Born and Fundación Sales to GA

    The In Vivo Association of BiP with Newly Synthesized Proteins Is Dependent on the Rate and Stability of Folding and Not Simply on the Presence of Sequences That Can Bind to BiP

    Get PDF
    Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably
    corecore