309 research outputs found

    Epsilon toxin from C lostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination

    Get PDF
    International audienceEpsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway

    Clostridium perfringens Epsilon Toxin Targets Granule Cells in the Mouse Cerebellum and Stimulates Glutamate Release

    Get PDF
    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons

    Inhibition promotes long-term potentiation at cerebellar excitatory synapses.

    Get PDF
    The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plasticity is poorly characterized. Here we reveal a functional coupling between ionotropic GABAA receptors and low threshold CaV3 calcium channels in PNs that sustains calcium influx and promotes long-term potentiation (LTP) at GC to PN synapses. High frequency stimulation induces LTP at GC to PN synapses and CaV3-mediated calcium influx provided that inhibition is intact; LTP is mGluR1, intracellular calcium store and CaV3 dependent. LTP is impaired in CaV3.1 knockout mice but it is nevertheless recovered by strengthening inhibitory transmission onto PNs; promoting a stronger hyperpolarization via GABAA receptor activation leads to an enhanced availability of an alternative Purkinje-expressed CaV3 isoform compensating for the lack of CaV3.1 and restoring LTP. Accordingly, a stronger hyperpolarization also restores CaV3-mediated calcium influx in PNs from CaV3.1 knockout mice. We conclude that by favoring CaV3 channels availability inhibition promotes LTP at cerebellar excitatory synapses.journal article2016 Sep 192016 09 19importe

    Calenge par Bertrand, parcours de lecture dans le Carnet d’un bibliothĂ©caire

    Get PDF
    Nous sommes tous redevables Ă  Bertrand Calenge, bibliothĂ©caire de renom, thĂ©oricien et praticien des bibliothĂšques, disparu en 2016. Un collectif de bibliothĂ©caires fait revivre cet auteur, en proposant un parcours de lecture Ă  travers son blog Carnet de notes. Ces parcours thĂ©matiques et transversaux recontextualisent les billets selon les principaux sujets traitĂ©s par l’auteur – collections, mĂ©diation, Ă©valuation, mĂ©tier, numĂ©rique, etc. – autant dire toutes les questions vives des bibliothĂšques. Ce livre expĂ©rimente une mise en book du blog d’un professionnel, pour nous inviter, comme l\u27Ă©crit Martine Poulain dans sa prĂ©face, « Ă  penser, Ă©changer, proposer »

    Genome analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared t

    The Tara Pacific expedition—A pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean

    Get PDF
    Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects—in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east–west transect from Panama to Papua New Guinea and a south–north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene
    • 

    corecore