429 research outputs found

    Nomenclature of Genetically Determined Myoclonus Syndromes:Recommendations of the International Parkinson and Movement Disorder Society Task Force

    Get PDF
    Genetically determined myoclonus disorders are a result of a large number of genes. They have wide clinical variation and no systematic nomenclature. With next-generation sequencing, genetic diagnostics require stringent criteria to associate genes and phenotype. To improve (future) classification and recognition of genetically determined movement disorders, the Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders (2012) advocates and renews the naming system of locus symbols. Here, we propose a nomenclature for myoclonus syndromes and related disorders with myoclonic jerks (hyperekplexia and myoclonic epileptic encephalopathies) to guide clinicians in their diagnostic approach to patients with these disorders. Sixty-seven genes were included in the nomenclature. They were divided into 3 subgroups: prominent myoclonus syndromes, 35 genes; prominent myoclonus syndromes combined with another prominent movement disorder, 9 genes; disorders that present usually with other phenotypes but can manifest as a prominent myoclonus syndrome, 23 genes. An additional movement disorder is seen in nearly all myoclonus syndromes: ataxia (n = 41), ataxia and dystonia (n = 6), and dystonia (n = 5). However, no additional movement disorders were seen in related disorders. Cognitive decline and epilepsy are present in the vast majority. The anatomical origin of myoclonus is known in 64% of genetic disorders: cortical (n = 34), noncortical areas (n = 8), and both (n = 1). Cortical myoclonus is commonly seen in association with ataxia, and noncortical myoclonus is often seen with myoclonus-dystonia. This new nomenclature of myoclonus will guide diagnostic testing and phenotype classification. (c) 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients.

    Get PDF
    BACKGROUND: CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. METHODS: An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. RESULTS: Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). CONCLUSION: This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available

    Postictal Psychosis in Epilepsy: A Clinicogenetic Study

    Get PDF
    OBJECTIVE: Psychoses affecting people with epilepsy increase disease burden and diminish quality of life. We characterised post-ictal psychosis, which comprises about one-quarter of epilepsy-related psychoses, and has unknown causation. METHODS: We conducted a case-control cohort study including patients diagnosed with post-ictal psychosis, confirmed by psychiatric assessment, with available data regarding epilepsy, treatment, psychiatric history, psychosis profile and outcomes. After screening 3,288 epilepsy patients, we identified 83 with psychosis: 49 had post-ictal psychosis. Controls were 98 adults, matched by age and epilepsy type, with no history of psychosis. Logistic regression was used to investigate clinical factors associated with post-ictal psychosis; univariate associations with a P-value<0.20 were used to build a multivariate model. Polygenic risk scores for schizophrenia were calculated. RESULTS: Cases were more likely to have seizure clustering (OR 7.59, P<0.001), seizures with a recollected aura (OR 2.49, P=0.013) and a family history of psychiatric disease (OR 5.17, P=0.022). Cases showed predominance of right temporal epileptiform discharges (OR 4.87, P=0.007). There was no difference in epilepsy duration, neuroimaging findings or anti-seizure treatment between cases and controls. Polygenic risk scores for schizophrenia in an extended cohort of post-ictal psychosis cases (58) were significantly higher than in 1,366 epilepsy controls (R2 =3%, P=6x10-3 ), but not significantly different from 945 independent patients with schizophrenia (R2 =0.1%, P=0.775). INTERPRETATION: Post-ictal psychosis occurs under particular circumstances in people with epilepsy with a heightened genetic predisposition to schizophrenia, illustrating how disease biology (seizures) and trait susceptibility (schizophrenia) may interact to produce particular outcomes (post-ictal psychosis) in a common disease

    Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives

    Get PDF
    Objective: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. Methods: This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). Results: We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman’s r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = −0.305, 95% confidence interval: [−0.504, −0.076]). Conclusion: Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode

    Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy.

    Get PDF
    OBJECTIVE: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings

    Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy

    Get PDF
    Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P =.01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery

    Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4

    Get PDF
    Absence epilepsy, characterized by spike–wave discharges (SWD) in the electroencephalogram, arises from aberrations within the circuitry of the cerebral cortex and thalamus that regulates awareness. The inbred mouse strain C3H/HeJ is prone to absence seizures, with a major susceptibility locus, spkw1, accounting for most of the phenotype. Here we find that spkw1 is associated with a hypomorphic retroviral-like insertion mutation in the Gria4 gene, encoding one of the four amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) receptor subunits in the brain. Consistent with this, Gria4 knockout mice also have frequent SWD and do not complement spkw1. In contrast, null mutants for the related gene Gria3 do not have SWD, and Gria3 loss actually lowers SWD of spkw1 homozygotes. Gria3 and Gria4 encode the predominant AMPA receptor subunits in the reticular thalamus, which is thought to play a central role in seizure genesis by inhibiting thalamic relay cells and promoting rebound burst firing responses. In Gria4 mutants, synaptic excitation of inhibitory reticular thalamic neurons is enhanced, with increased duration of synaptic responses—consistent with what might be expected from reduction of the kinetically faster subunit of AMPA receptors encoded by Gria4. These results demonstrate for the first time an essential role for Gria4 in the brain, and suggest that abnormal AMPA receptor-dependent synaptic activity can be involved in the network hypersynchrony that underlies absence seizures
    corecore