48 research outputs found

    Distribution, characteristics and potential of biomass-dense thinning forests in Sweden

    Get PDF
    Understanding the characteristics of unutilized biomass resources, such as small-diameter trees from biomass-dense thinning forests (BDTF) (non-commercially-thinned forests), can provide important information for developing a bio-based economy. The aim of this study was to describe the areal distribution, characteristics (biomass of growing stock, tree height, etc.) and harvesting potential of BDTF in Sweden. A national forest inventory plot dataset was imported into a geographical information system and plots containing BDTF were selected by applying increasingly stringent constraints. Results show that, depending on the constraints applied, BDTF covers 9-44% (2.1-9.8 M ha) of the productive forest land area, and contains 7-34% of the total growing stock (119-564 M OD t), with an average biomass density of 57 OD t ha^-1. Of the total BDTF area, 65% is located in northern Sweden and 2% corresponds to set-aside farmlands. Comparisons with a study from 2008 indicate that BDTF area has increased by at least 4% (about 102 000 ha), in line with general trends for Sweden and Europe. Analyses revealed that the technical harvesting potential of delimbed stemwood (over bark, including tops) from BDTF ranges from 3.0 to 6.1 M OD t yr^-1 (7.5 to 15.1 M m^3 yr^-1), while the potential of whole-tree harvesting ranges from 4.3 to 8.7 M OD t yr^-1 (10.2 to 20.6 M m3 yr^-1) depending on the scenario considered. However, further technological developments of the harvest and supply systems are needed to utilize the full potential of BDTF

    Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions

    Full text link
    The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. An analytical study of respective thermonuclear functions is being conducted with the help of statistical techniques. The pathway model, recently introduced by Mathai (2005), is utilized for thermonuclear functions and closed-form representations are obtained in terms of H-functions and G-functions. Maxwell-Boltzmannian thermonuclear functions become particular cases of the extended thermonuclear functions. A brief review on the development of the theory of analytic representations of nuclear reaction rates is given.Comment: 16 pages, LaTe

    The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment

    Get PDF
    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV/n. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles (m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and 350 GeV and (4.8+-0.8)x10^2 E^(-2.67+-0.06) particles (m^2 GeV nucleon^-1 sr s)^-1, where E is the kinetic energy per nucleon, for helium nuclei between 15 and 150 GeV nucleon^-1.Comment: To be published on Astroparticle Physics (44 pages, 13 figures, 5 tables

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio

    De invloed van het voerregime tijdens de opfok op spermaproduktie, spermakwaliteit en beenwerk van stieren

    No full text
    Voor het bepalen van de vleesproduktiegeschiktheid van toekomstige k.i.-stieren is het misschien beter om deze tijdens de opfok volgens een mestschema te voeren. In dit onderzoek onder 120 stierkalveren is nagegaan of dit invloed had op de spermaproduktie, spermakwaliteit en het beenwerk van de stiere

    Interinstitutional Tensions in the New System for Delegation of Powers

    No full text
    corecore