A new measurement of the primary cosmic-ray proton and helium fluxes from 3
to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998.
This experimental setup combines different detector techniques and has
excellent particle discrimination capabilities allowing clear particle
identification. Our experiment has the capability to determine accurately
detector selection efficiencies and systematic errors associated with them.
Furthermore, it can check for the first time the energy determined by the
magnet spectrometer by using the Cherenkov angle measured by the RICH detector
well above 20 GeV/n. The analysis of the primary proton and helium components
is described here and the results are compared with other recent measurements
using other magnet spectrometers. The observed energy spectra at the top of the
atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles
(m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and
350 GeV and (4.8+-0.8)x10^2 E^(-2.67+-0.06) particles (m^2 GeV nucleon^-1 sr
s)^-1, where E is the kinetic energy per nucleon, for helium nuclei between 15
and 150 GeV nucleon^-1.Comment: To be published on Astroparticle Physics (44 pages, 13 figures, 5
tables