8,649 research outputs found

    Squeezed pulsed light from a fiber ring interferometer

    Get PDF
    Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed

    Circle actions, central extensions and string structures

    Full text link
    The caloron correspondence can be understood as an equivalence of categories between GG-bundles over circle bundles and LGρS1LG \rtimes_\rho S^1-bundles where LGLG is the group of smooth loops in GG. We use it, and lifting bundle gerbes, to derive an explicit differential form based formula for the (real) string class of an LGρS1LG \rtimes_\rho S^1-bundle.Comment: 25 page

    Anomalies in Noncommutative Dipole Field Theories

    Get PDF
    We study chiral symmetries of fermionic non commutative dipole theories. By using Fujikawa's approach we obtain explicit expressions of the anomalies for Dirac and chiral fermions in 2 and 4 dimensions.Comment: 11pages, latex file. Comments adde

    Winding effects on brane/anti-brane pairs

    Full text link
    We study a brane/anti-brane configuration which is separated along a compact direction by constructing a tachyon effective action which takes into account transverse scalars. Such an action is relevant in the study of HQCD model of Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact circle sets the confinement scale. Our approach is motivated by string theory orbifold constructions and gives a route to model inhomogeneous tachyon decay. We illustrate the techniques involved with a relatively simple example of a harmonic oscillator on a circle. We will then repeat the analysis for the Sakai-Sugimoto model and show that by integrating out the winding modes will provide us with a renormalized action with a lower energy than that of truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published versio

    A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems

    Full text link
    Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters, with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were parallelized using OpenMP, and a test using 10^7 particles randomly distributed in a cube showed 78% efficiency on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4x speed-up of the overall algorithm on single-core tests with 10^3 - 10^7 particles. Parallel scalability was studied in both strong and weak scaling. The strong scaling test used 10^8 particles and resulted in 93% parallel efficiency on 2048 processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2x faster). The weak scaling test used 10^6 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and massively parallel architectural landscape

    Crayfish Cerebral Ganglia Preservation and Sectioning for an Assessment of Exercise Induced Neurogenesis

    Get PDF
    Neurogenesis is the formation of new neurons from neural stem cells that occurs throughout adulthood in a variety of animals, including humans. Exercise enhances cell proliferation in mammals, and has been linked to ameliorating age associated declines in memory. Since the nervous system operates under common rules and themes in both vertebrates and invertebrates, our experiment aimed to observe the effects of exercise on the simpler nervous system of invertebrates using BrdU, which labels newly synthesized DNA and indicates cell proliferation. Multiple factors involved in sample preparation, preservation in paraffin, and sectioning via microtome created various challenges early on. Our fundamental focus has centered on mastering these techniques, as it is crucial to eliminate any variability that might affect results. After much practice and troubleshooting, we were able to obtain viable brain tissue sections and are now able to progress toward the exercise trials of the experiment

    Exactly stable non-BPS spinors in heterotic string theory on tori

    Full text link
    Considering SO(32) heterotic string theory compactified on a torus of dimension 4 and less, stability of non-supersymmetric states is studied. A non-supersymmetric state with robust stability is constructed, and its exact stability is proven in a large region of moduli space against all the possible decay mechanisms allowed by charge conservation. Using various T-duality transform matrices, we translate various selection rules about conserved charges into simpler problems resembling partition and parity of integers. For heterotic string on T^4, we give a complete list of BPS atoms with elementary excitations, and we study BPS and non-BPS molecules with various binding energies. Using string-string duality, the results are interpreted in terms of Dirichlet-branes in type IIA string theory compactified on an orbifold limit of a K3 surface.Comment: 47 pages, 14 figures, LaTe

    Quark mass and condensate in HQCD

    Full text link
    We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory. We show that this field is responsible both for the spontaneous breaking of the chiral symmetry, and for the generation of (current algebra) quark masses, from the point of view of the bulk theory. As a by-product we show how this leads to the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5), (4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the pion mass rewritten in a clearer way, version published in JHE

    Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe

    Full text link
    Chiral magnetic interactions induce complex spin textures including helical and conical spin waves, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyze the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry, and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides new insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses novel challenges regarding their technological usage

    All-fibre source of amplitude-squeezed light pulses

    Full text link
    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimisation of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations [Schmitt etl.al., PRL Vol. 81, p.2446, (1998)]. The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science
    corecore