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Abstract 

Neurogenesis is the formation of new neurons from neural stem cells that occurs 

throughout adulthood in a variety of animals, including humans.  Exercise enhances cell 

proliferation in mammals, and has been linked to ameliorating age associated declines in 

memory.  Since the nervous system operates under common rules and themes in both 

vertebrates and invertebrates, our experiment aimed to observe the effects of exercise on 

the simpler nervous system of invertebrates using BrdU, which labels newly synthesized 

DNA and indicates cell proliferation.  Multiple factors involved in sample preparation, 

preservation in paraffin, and sectioning via microtome created various challenges early 

on.  Our fundamental focus has centered on mastering these techniques, as it is crucial to 

eliminate any variability that might affect results.  After much practice and 

troubleshooting, we were able to obtain viable brain tissue sections and are now able to 

progress toward the exercise trials of the experiment. 
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Introduction 
 

Age associated declines in memory occur in both vertebrates and invertebrates 

(Altman & Das, 1965; Kuhn et al., 1996).  Studies have found that neurons are formed 

during adulthood as well as during embryonic development; however, the ways in which 

neurons form during these two stages in life differ significantly. Clusters of stem cells 

produce many other types of cells; during embryonic development, nervous system stem 

cell clusters are located in many different parts of the mammalian brain (Ehninger & 

Kempermann, 2008; Imayoshi et al., 2009).  In adult mammals, nervous system stem 

cells actively produce neurons in only two locations (Kornack & Rakic, 2001; Rochefort 

et al., 2002; reviewed in Zhao et al., 2008), which limits the rate at which adult 

neurogenesis occurs. 

One location where newly generated adult neurons grow in the vertebrate brain is 

the dentate gyrus.  This part of the brain is associated with both spatial and episodic 

recollection; one of the most supported theories concerning the function of newly formed 

adult neurons involves spatial memory (reviewed by Eichenbaum et al., 1999).  Results 

from recent studies indicate that adult neurogenesis is necessary for long-term spatial 

memory (Snyder, et al., 2005) and that adult hippocampal neurogenesis is necessary for 

tasks with low degrees of spatial separation (Clelland et al., 2009).  If factors that 

increase adult neurogenesis are identified, they could eventually be utilized research that 

would link them at a molecular level to neuron production.  This research could 

eventually be applied in a clinical setting to assist patients of diseases associated with 

memory loss, such as Alzheimer’s disease and dementia. 
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There are several extrinsic factors that have shown to increase neurogenesis in 

adults; memory and learning tasks, enriched environment, and physical activity.  When 

directly comparing the effect each of these three factors has on neurogenesis, it was 

demonstrated that voluntary exercise had the greatest impact (van Praag et al., 1999).  

The finding that exercise greatly enhances cell proliferation in mammals has been 

verified by several experiments over the last 10 years (Kempermann, 2008; van Praag 

2006).  Conditions that have generated the greatest increase in proliferation are when 

exercises last longer and are of a lower intensity (Holmes et al., 2004; Lucassen et al., 

2008). Physical activity’s cardiovascular effect extends to the brain by increasing blood 

flow in the cerebrum and inducing angiogenesis, formation of new capillaries, near the 

motor cortex (Swain et al., 2003).  Exercise has also been linked to a reduction in stress 

and depression as well as ameliorating age associated declines in memory (Eadie et al., 

2005; Ernst et al., 2005; Kim et al., 2010).  Exercise in human subjects throughout 

midlife has shown to significantly reduce the odds of dementia and Alzheimer’s disease 

(Andel et al., 2008) and is being considered as a treatment for both.  In a 2010 study 

conducted by Sung-Eun Kim et al., rats that exercised had performed much better in 

short-term and spatial memory tasks than those who did not exercise.  It is important that 

the link between exercise and adult neurogenesis be explored so that future application 

can be made in a clinical environment. 

Since the nervous system operates under common rules and themes in both 

vertebrates and invertebrates, information can be extrapolated from these model 

organisms and applied to humans.  The benefits to using an invertebrate model 

specifically is that they provide a more simplified nervous system and show part of the 
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evolutionary significance to traits which have been preserved and refined.  An 

invertebrate model that has been commonly used to study the nervous system is the 

crayfish.  As in mammals, the adult born crayfish neurons will travel to the olfactory bulb 

and become interneurons (Zhang et al., 2008).  Similarities between crayfish and 

vertebrates with regards to neurogenesis also include: progenitor cells having both glial 

and neural properties, the use of a migratory stream to direct the growth of proliferated 

cells, as well as having similar features of their neurons (Sullivan et al., 2007).  

Beyond the cellular similarities, factors that affect neurogenesis in vertebrates 

have also showed the same correlation in crayfish.  Sandeman and Sandeman (2000) 

showed that enriched environments increase neurogenesis in crayfish as it does in the 

mammalian models.  Also, there has been a link established between olfactory stimulus 

and rate of neurogenesis (Cayre et al., 2002).  However, one of the major factors 

affecting neurogenesis, physical activity, has yet to be tested in crayfish.  Examining this 

association in the more simplistic invertebrate model will help to establish if there is a 

direct relationship between exercise and neurogenesis, or if there is something else 

leading to this association in the more complicated mammalian system.  Though exercise 

has a strong effect on neurogenesis by increasing proliferation and new cell survival, it 

has not been studied extensively in many model organisms.  The purpose of this study 

will be to determine whether exercise will increase neurogenesis in the adult crayfish.   
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Materials and Methods 
 

Model Organism 

Crayfish were collected from the Little Rio Grande River in Patterson Park, 

Muskegon County, MI. The species utilized in this experiment was Orconectes 

propinquus. Both adult male and female subjects were used. 

 

Initial Experimental Proposal 

The experimental procedure involves 80 male crayfish of the species Orconectes 

propinquus, 40 for experimental group, 40 for control group. They will be housed in 

isolation to diminish olfactory stimulation since olfactory enrichment alone has shown to 

increase survival of newly formed cells (Rochefort et al., 2002). The experimental group 

will be exercised using a water flume forcing the crayfish to walk during exercise testing.  

The flume is not used for the control group; however the crayfish are handled with the 

same schedule as the exercise group for three weeks to allow for the elimination of stress 

as a variable between groups. It is important to account for similar stressors because 

stress has been shown to greatly diminish neurogenesis (Lucassen et al., 2008).  

The experiment is carried out over a six-week time frame. The experimental 

group is subjected to thirty minutes of physical activity for five consecutive days. The 

control group is placed in a different isolation chamber with no water flow for thirty 

minutes.  Each group will experience similar feeding schedules and day/night schedules. 

At the beginning of week one, crayfish from both groups will be immersed in a 

one-liter solution containing 10mL of the tag bromodeoxyruidine (BrdU) over night 

(Sandeman & Sandeman, 2000).  BrdU is a synthetic thymine that inserts into newly 
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synthesized DNA and can be detected by administration of an anti-BrdU marker 

(Nowakowski, et al., 1989). Crayfish are then exercised for two weeks and starting week 

three, five crayfish from each group will be sacrificed. This will be done each week for 

four weeks to quantify the number of new cells that proliferate and survive through each 

week. The brains of these crayfish are dissected, preserved, dried, and embedded into 

paraffin blocks. Twenty-five micrometer 

sections of the preserved paraffin brains are 

placed on slides to show the proliferating 

zones, soma clusters nine and ten, as well as 

the olfactory migratory stream (Fig 1). Cells 

that are formed after administration of BrdU will be marked with the Anti-BrdU antibody 

and will appear dark brown on the prepared slides (Figure 2; Sandeman & Sandeman, 

2000). If exercise affects neurogenesis in crayfish similar to 

what is seen in mammals, the number of BrdU positive cells 

containing neuronal markers should be significantly greater 

in the exercise group than the controls due to increased 

proliferation rate and/or survival.  Additional cellular 

antibodies maybe used based on results of initial BrdU exposures. 

 

Progress Report  

Crayfish were dissected using a common dissection kit and tray.  The cerebral 

ganglia were initially retrieved with eyestalks intact. Eyestalks were kept to help with 

orientation of samples during paraffin encasement and slide preparation. Following 

	  
Figure	  2.	  Staining	  from	  anti-‐
BrdU	  indicating	  proliferating	  

cells.	  

	  
Figure	  1.	  Crayfish	  cerebral	  ganglia.	  



	   7	  

dissection, tissue samples were kept in a solution of 4% paraformaldehyde (PFA) in 10X 

phosphate buffer solution (PBS) for a period of 48 hours.  Neural tissue ended up 

deteriorating by the end of this period, so the 48 hours was reduced to 24 hours with an 

addition of three washes in 1X PBS solution.  After this adjustment, neural tissue still 

exhibited deterioration, leading an adjustment of the pH of the PBS. The solution was 

adjusted to slightly basic by adding sodium hydroxide until the pH was 6.2. 

After 24 hours, samples were dehydrated in preparation for paraffin encasement. 

Neural tissue was exposed to a 70% ethanol solution for one wash, which was twenty 

minutes in duration. Tissue was subsequently washed in a 95% and the 100% ethanol 

solutions, to be followed by two xylene washes. Each wash lasted twenty minutes.  An 

80% ethanol wash was eliminated so that tissue was not over dehydrated, and trials were 

reduced to one per solution type.  Neural tissue was then placed in a heated paraffin bath 

for one hour to allow for permeation of paraffin into the samples. A Micron® paraffin 

embedding station was used to embed the tissue for later sectioning.  Embedded tissues 

were refrigerated for twenty four hours in order to solidify, then cut with a box cutter 

blade and fitted into a Microm® microtome for sectioning. 

Sections were cut at a thickness of 12.5 µm then placed in a 36° C water bath to 

unfurl. Sections were then placed on slides and melted over a hotplate at 65° C. 

Inspection was then done under microscope to determine if brain tissue was adequately 

preserved.   
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Results 

Over the course of the experiment, several adjustments were made to the process 

of crayfish dissection, tissue preservation, and sectioning. The changes made to these 

processes were imperative to the overall project goal of running exercise trials with 

crayfish. Without properly establishing the techniques of dissection and cerebral ganglia 

tissue sectioning, we could not progress to the next phase of the project without having 

prodigious inconsistencies in our results due to deterioration of neural tissue during 

preservation phase and dehydration when exposed to ethanol washes.  

Reducing the forty-eight hour preservation phase by 50% and adding the pH 

monitored 1X PBS wash prevented tissue from deteriorating before sectioning.  Reducing 

the amount of washes per ethanol solution allowed for tissue dehydration at the desired 

level without yielding brittle sections.  Samples run under these adjustments produced 

viable tissue sections. Thus far, the preservation and sectioning procedures have been 

refined and we are now continuing on to the exercise portion the proposed work. 

 
 
  



	   9	  

Discussion 
 

It was critical to perfect the techniques for dissection, tissue preservation, paraffin 

encasement, and sectioning. The initial techniques had previously been established by a 

graduate student working the lab, yet when we attempted her protocols, we found the 

neural tissue to either be too wet from the tissue deterioration or too brittle from being 

over dehydrated.  The prior work helped us in creating tissue preservation protocols that 

we have refined to now allow us to move onto the exercise portion of the experiment.  

Exercise has been shown to delay onset and progression of dementia and 

Alzheimer ’s disease, serves as a potent antidepressant, leads to greater improvement in 

cognition following brain injury and reduces age-related decline of neurogenesis (Eisch 

et al., 2008; Gresbach et al., 2004; Teri et al., 2008; Wolf et al., 2006).  Exploring 

exercise and how it directly affects neurogenesis in an invertebrate model will allow for 

greater flexibility in testing exercise’s viability.  And greater understanding of the 

relationship between exercise and its associated physiological changes in crayfish may 

allow for expansion of physical activity as a treatment for neurological disorders and 

possibly lead to more clinical applications than those that are currently being explored. 
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