233 research outputs found

    Resonant X-Ray Magnetic Scattering from CoO

    Full text link
    We analyze the recent experiment [W. Neubeck {\em et al.}, Phys. Rev. B \vol(60,1999,R9912)] for the resonant x-ray magnetic scattering (RXMS) around the K edge of Co in the antiferromagnet CoO. We propose a mechanism of the RXMS to make the 4p4p states couple to the magnetic order: the intraatomic exchange interaction between the 4p4p and the 3d3d states and the pp-dd mixing to the 3d3d states of neighboring Co atoms. These couplings induce the orbital moment in the 4p4p states and make the scattering tensor antisymmetric. Using a cluster model, we demonstrate that this modification gives rise to a large RXMS intensity in the dipole process, in good agreement with the experiment. We also find that the pre-edge peak is generated by the transition to the 3d3d states in the quadrupole process, with negligible contribution of the dipole process. We also discuss the azimuthal angle dependence of the intensity.Comment: 15 pages, 8 figure

    Resonant X-Ray Scattering from CeB6_{6}

    Full text link
    We calculate the resonant x-ray scattering (RXS) spectra near the Ce LIIIL_{\rm III} absorption edge in CeB6_6, on the basis of a microscopic model that the 4f4f states of Ce are atomic while the 5d5d states form an energy band with a reasonable density of states. In the initial state, we employ an effective Hamiltonian of Shiina {\it et al}. in the antiferro-quadrupole (AFQ) ordering phase, while we construct the wave function consistent with the neutron scattering experiment in the magnetic ground state. In the intermediate state, we take full account of the intra-atomic Coulomb interaction. Without assuming any lattice distortion, we obtain sufficient RXS intensities on the AFQ superlattice spot. We obtain the spectral shape, the temperature and magnetic field dependences in good agreement with the experiment, thus demonstrating the mechanism that the intensity is brought about by the modulation of 5d5d states through the anisotropic term of the 5d5d-4f4f Coulomb interaction. In the magnetic ground state, a small pre-edge peak is found by the E2E_2 process. On the magnetic superlattice spot, we get a finite but considerably small intensity. The magnetic form factor is briefly discussed.Comment: Latex, 10 pages, 12 figures. To be published in J. Phys. Soc. Jpn., Vol.71, No. 7 (2002

    Mechanism of resonant x-ray magnetic scattering in NiO

    Full text link
    We study the resonant x-ray magnetic scattering (RXMS) around the K edge of Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and the 3d states as localized states. We propose a mechanism that the 4p states are coupled to the magnetic order through the intra-atomic Coulomb interaction between the 4p and the 3d states and through the p-d mixing to the 3d states of neighboring Ni atoms. These couplings induce the orbital moment in the 4p band, and thereby give rise to the RXMS intensity at the K edge in the dipolar process. It is found that the spin-orbit interaction in the 4p band has negligibly small contribution to the RXMS intensity. The present model reproduces well the experimental spectra. We also discuss the azimuthal angle dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure

    Neutron-Anti-Neutron Oscillation: Theory and Phenomenology

    Full text link
    The discovery of neutrino masses has provided strong hints in favor of the possibility that B-L symmetry is an intimate feature of physics beyond the standard model. I discuss how important information about this symmetry as well as other scenarios for TeV scale new physics can be obtained from the baryon number violating process, neutron-anti-neutron oscillation. This article presents an overview of different aspects of neutron-anti-neutron oscillation and is divided into the following parts : (i) the phenomenon; (ii) the physics, (iii) plausible models and (iv) applications to cosmology. In particular, it is argued how the discovery of nnˉn-\bar{n} oscillation can significantly affect our thinking about simple grand unified theory paradigms for physics beyond the standard model, elucidate the nature of forces behind neutrino mass and provide a new microphysical view of the origin of matter in the universe.Comment: 34 pages; 7 figures; Invited review for the issue on "Fundamental Neutron Physics" by J. Phys.

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments
    corecore