154 research outputs found

    In situ observation of growth dynamics in DECLIC Directional Solidification Insert onboard ISS: DSI-R flight campaign

    Get PDF
    International audienceThe study of solidification microstructure formation is of utmost importance for materials design and processing, as solid-liquid interface patterns largely govern mechanical and physical properties. Pattern selection occurs under dynamic conditions of growth in which the initial morphological instability evolves nonlinearly and undergoes a reorganization process. The dynamic and nonlinear nature of this instability renders in situ observation of the interface an invaluable tool to gain knowledge on the time-evolution of the interface pattern. Transparent organic analogs, which solidify like metallic alloys, allow direct visualization of interface dynamics. Extensive ground-based studies of both metallic and organic bulk samples have established the presence of significant convection during solidification processes that alters the formation of interfacial microstructures. A reduced-gravity environment is therefore mandatory for fluid flow elimination in bulk samples. In the framework of the CNES project MISOL3D (MIcrostrutures de SOLidification 3D) and the NASA projects DSIP (Dynamical Selection of 3D Interface Patterns), SPADES (SPAtiotemporal Evolution of three-dimensional DEndritic array Structures) and CAMUS (ComputAtional Studies of MicrostrUcture Formation During Alloy Solidification in Microgravity), we participated in the development of the Directional Solidification Insert (DSI) of the DEvice for the study of Critical Liquids and Crystallization (DECLIC). The DECLIC-DSI is dedicated to in situ and real-time characterization of solid-liquid interface patterns during directional solidification of transparent alloys in diffusive transport regime. Between April 2010 and March 2011, the first ISS campaign (DSI) explored the entire range of microstructures resulting in unprecedented observations. A second campaign (DSI-R), performed between October 2017 and December 2018, in which the insert contained an alloy of higher solute concentration, allowed to complete the benchmark database. The increase of solute concentration resulted in well-developed dendritic patterns at lower velocities (lower interface curvature and larger tip radius). The microstructure resulting from dendritic growth is dominant in metallurgy so that it is fundamental to understand the mechanisms of its formation. The main aims of this experimental campaign are to understand: the mechanisms of the cell to dendrite transition, the fundamental mechanisms of sidebranching formation, the dependence of dendrite tip shapes on growth conditions, the interaction of primary array and secondary sidebranches, and the influence of subgrain boundaries on the spatiotemporal organization of the array structure. Preparation, analysis and interpretation of the experiments performed onboard ISS are considerably enhanced by experiments performed on ground using thin-samples (Pr. Trivedi's group) and phase-field simulations of microstructure formation in a diffuse growth regime (Pr. Karma's group). In this summary, we will present an initial assessment of the results obtained during the DSI-R campaign

    Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    Full text link
    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions.Comment: V2: Submitted to and published in Annals of Physics. 59 manuscript pages, 15 figures (occupying 21 pages). The full abstract is on the first page. Nonessential modifications/enhancements in the presentation (more compact presentation of the text and figure data, some style improvements, etc.

    Preparing an unsupervised massive analysis of SPHERE high contrast data with the PACO algorithm

    Full text link
    We aim at searching for exoplanets on the whole ESO/VLT-SPHERE archive with improved and unsupervised data analysis algorithm that could allow to detect massive giant planets at 5 au. To prepare, test and optimize our approach, we gathered a sample of twenty four solar-type stars observed with SPHERE using angular and spectral differential imaging modes. We use PACO, a new generation algorithm recently developed, that has been shown to outperform classical methods. We also improve the SPHERE pre-reduction pipeline, and optimize the outputs of PACO to enhance the detection performance. We develop custom built spectral prior libraries to optimize the detection capability of the ASDI mode for both IRDIS and IFS. Compared to previous works conducted with more classical algorithms than PACO, the contrast limits we derived are more reliable and significantly better, especially at short angular separations where a gain by a factor ten is obtained between 0.2 and 0.5 arcsec. Under good observing conditions, planets down to 5 MJup, orbiting at 5 au could be detected around stars within 60 parsec. We identified two exoplanet candidates that require follow-up to test for common proper motion. In this work, we demonstrated on a small sample the benefits of PACO in terms of achievable contrast and of control of the confidence levels. Besides, we have developed custom tools to take full benefits of this algorithm and to quantity the total error budget on the estimated astrometry and photometry. This work paves the way towards an end-to-end, homogeneous, and unsupervised massive re-reduction of archival direct imaging surveys in the quest of new exoJupiters.Comment: Accepted for publication in A&

    BARRANCO DE AZUAJE [Material gráfico]

    Get PDF
    ADQUIRIDA POR EL COLECCIONISTA EN LAS PALMAS DE G.C.FOTO POSTAL DE "FUENTE DE AZUAJE. MOYA. GRAN CANARIA, LAS PALMAS" (COLOREADA)Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Gender differences in diabetes self-care in adults with type 1 diabetes: Findings from the T1D Exchange clinic registry

    Get PDF
    Aims To evaluate gender differences in diabetes self-care components including glycemic, blood pressure and lipid control, utilization of diabetes technologies and acute diabetes complications in adults with type 1 diabetes. Methods A total of 9,481 participants >18 years were included in the analysis, 53% were female. Variables of interest included glycemic control measured by HbA1c, systolic/diastolic blood pressures, presence of dyslipidemia, insulin delivery modality, and rates of acute complications. Results Glycemic control was similar in women and men (mean HbA1c in both groups: 8.1% ± 1.6% (64 ± 16 mmol/mol), (p = 0.54). More women used insulin pump therapy (66% vs. 59%, p < 0.001) but use of sensor technology was similar (p < = 0.42). Women had higher rates of diabetic ketoacidosis (DKA) (5% vs. 3%, p < 0.001) and eating disorders (1.7% vs. 0.1%, p < 0.001). Severe hypoglycemia rates were not different between men and women (p = 0.42). Smoking (6% vs 4%, p < 0.001), systolic (125 ± 14.2 vs. 121 ± 14.4, p < 0.001) and diastolic blood pressure (73.3 ± 9.5 vs. 72.2 ± 9.3, p < 0.001) and rate of dyslipidemia (28% vs. 23%, p < 0.001) were higher in men. Conclusion While glycemic control in type 1 diabetes was similar regardless of gender, rates of DKA and eating disorders were higher in women while rates of smoking, hypertension and dyslipidemia were higher in men

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration &gt;= 5 years, cases of DN were defined as albuminuria &gt;300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In &lt;10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    An imaged 15Mjup companion within a hierarchical quadruple system

    Get PDF
    Since 2019, the direct imaging B-star Exoplanet Abundance Study (BEAST) at SPHERE@VLT has been scanning the surroundings of young B-type stars in order to ascertain the ultimate frontiers of giant planet formation. Recently, the 174+317^{+3}_{-4} Myr HIP 81208 was found to host a close-in (~50 au) brown dwarf and a wider (~230 au) late M star around the central 2.6Msun primary. Alongside the continuation of the survey, we are undertaking a complete reanalysis of archival data aimed at improving detection performances so as to uncover additional low-mass companions. We present here a new reduction of the observations of HIP 81208 using PACO ASDI, a recent and powerful algorithm dedicated to processing high-contrast imaging datasets, as well as more classical algorithms and a dedicated PSF-subtraction approach. The combination of different techniques allowed for a reliable extraction of astrometric and photometric parameters. A previously undetected source was recovered at a short separation from the C component of the system. Proper motion analysis provided robust evidence for the gravitational bond of the object to HIP 81208 C. Orbiting C at a distance of ~20 au, this 15Mjup brown dwarf becomes the fourth object of the hierarchical HIP 81208 system. Among the several BEAST stars which are being found to host substellar companions, HIP 81208 stands out as a particularly striking system. As the first stellar binary system with substellar companions around each component ever found by direct imaging, it yields exquisite opportunities for thorough formation and dynamical follow-up studies.Comment: 12 pages, 9 figures, 5 tables. Accepted for publication as a Letter in Astronomy and Astrophysics, section 1. Letters to the Edito

    A Targeted Multiomics Approach to Identify Biomarkers Associated with Rapid eGFR Decline in Type 1 Diabetes

    Get PDF
    Background: Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict. Methods: We designed a case-control study with multiple exposure measurements nested within 4 well-characterized T1D cohorts (FinnDiane, Steno, EDC, and CACTI) to identify biomarkers associated with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as results of models testing associations of clinical characteristics with rapid eGFR decline in the study population, upon which "omics" studies will be built. Cases (n = 535) and controls (n = 895) were defined as having an annual eGFR decline of >= 3 andPeer reviewe
    corecore