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ABSTRACT1

Background2

Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular3

filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are4

poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict.5

Methods6

We designed a case-control study with multiple exposure measurements nested within four well-7

characterized T1D cohorts (FinnDiane, Steno, EDC, CACTI) to identify biomarkers associated8

with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as9

results of models testing associations of clinical characteristics with rapid eGFR decline in the10

study population, upon which “omics” studies will be built. Cases (n = 535) and controls (n = 895)11

were defined as having an annual eGFR decline of >3 ml/min/1.73m2 and <1 ml/min/1.73m2,12

respectively. Associations of demographic and clinical variables with rapid eGFR decline were13

tested using logistic regression, and prediction was evaluated using area under the curve (AUC)14

statistics. Targeted metabolomics, lipidomics, and proteomics are being performed using high-15

resolution mass-spectrometry techniques.16

Results17

At baseline, mean age was 43 years, diabetes duration was 27 years, eGFR was 94 ml/min/1.73m2,18

and 62% of participants were normoalbuminuric. Over 7.6 years median follow-up, the mean19

annual change in eGFR in cases and controls was -5.7 ml/min/1.73m2 and 0.6 ml/min/1.73m2,20

respectively. Younger age, longer diabetes duration, and higher baseline HbA1c, urine albumin-21

creatinine ratio, and eGFR were significantly associated with rapid eGFR decline. The cross-22
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validated AUC for the predictive model incorporating these variables plus sex and mean arterial1

blood pressure was 0.74 (95% CI 0.68, 0.79; p < 0.001).2

Conclusion3

Known risk factors provide moderate discrimination of rapid eGFR decline. Identification of blood4

and urine biomarkers associated with rapid eGFR decline in T1D using targeted omics strategies5

may provide insight into disease mechanisms and improve upon clinical predictive models using6

traditional risk factors.7

8

INTRODUCTION9

Approximately 25-40% of individuals with type 1 diabetes (T1D) develop diabetic kidney10

disease (DKD), defined as a reduction in estimated glomerular filtration rate (eGFR) or onset of11

albuminuria [1,2]. In this population, the reported incidence of kidney failure ranges from 2-35%12

over 30 years of T1D duration, and up to 60% over 50 years of T1D duration [3,4].13

Progressive eGFR decline is largely a monotonic process that occurs early in the course of14

T1 DKD [5]. The annual rate of decline varies across affected individuals, with more rapid rates15

conferring higher risk of kidney failure [6]. Additionally, eGFR decline may precede the onset of16

albuminuria, suggesting the presence of disease activity before clinical signs are apparent [5,7].17

While various pathophysiological processes including hyperglycemia, microvascular dysfunction,18

inflammation, and fibrosis, are implicated in DKD, the mechanisms underlying the observed19

differential decline in kidney function across individuals remain poorly understood [8,9]. Insight20

into the mechanisms of eGFR decline in T1D is important for early identification of individuals at21

risk for DKD progression and for development of new therapies.22
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The search is ongoing for novel biomarkers that can parse through the heterogeneous nature1

of DKD pathophysiology and improve the predictive and prognostic abilities of existing clinical2

models for DKD progression [10]. A number of candidate biomarkers have been associated with3

putative pathogenic pathways (including inflammation, endothelial dysfunction, and fibrosis) and4

functional kidney outcomes (such as eGFR decline, albuminuria, and kidney failure) in DKD [11].5

However, their widespread use is limited by lack of validation and diagnostic precision [12-14].6

The development of “omic” approaches has facilitated biomarker identification in DKD7

via quantification of low-molecular weight proteins, metabolites, and lipids in blood and urine8

using refined mass spectrometry techniques [15,16]. A new multidimensional urinary proteome9

classifier (CKD273) has identified new peptide markers of interest and demonstrated promise in10

detecting individuals with diabetes who are at risk for progression of DKD, though studies have11

primarily focused on individuals with type 2 diabetes (T2D) [17,18]. Recently, 125 plasma amino12

acid, triglyceride, and lipid metabolites were cross-sectionally associated with eGFR in a large13

T2D meta-analyses [19]. Among individuals with T1D, use of omic technologies may allow for14

better characterization of the molecular pathways responsible for eGFR decline and enable15

application of this insight to the development of predictive models.16

Recently, an international consortium funded by JDRF was established to identify17

metabolite, lipid, and protein markers of eGFR decline in individuals with T1D using novel multi-18

omics techniques. The aims of the JDRF consortium are (1) to discover and validate a set of19

biomarkers associated with rapid eGFR decline in T1D using novel omics platforms which may20

provide insight into disease mechanisms, and (2) to use resulting omics data to develop predictive21

models for rapid eGFR decline in T1D. In this paper, we describe the rationale, design, cohorts,22

and methods of the JDRF Biomarkers Consortium, and examine associations of clinical variables23
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with rapid eGFR loss as well as prediction of eGFR loss by clinical variables to establish common,1

appropriate models upon which to add omics measurements.2

3

MATERIALS AND METHODS4

Study design5

We designed a case-control study with multiple exposure measurements to test associations6

of blood and urine biomarkers, measured at baseline, with subsequent rapid eGFR decline in T1D.7

The case-control study was nested within four T1D cohorts. Cases were defined as having an8

annual decline in eGFR of > 3 ml/min/1.73m2 and controls were defined as having an annual9

decline in eGFR of < 1ml/min/1.73m2. Blood and urine samples obtained at baseline are being10

applied to metabolomics, lipidomics, and/or proteomics platforms for measurement of pre-11

specified biomarkers. A discovery-validation approach will be taken to test associations of12

biomarkers with eGFR decline.13

14

Study population15

Our study sample is composed of 1,430 participants (535 cases and 895 controls) from four16

well-characterized T1D cohorts: the Finnish Diabetic Nephropathy study (FinnDiane), the Steno17

Diabetes Center Copenhagen study (Steno), the Epidemiology of Diabetes Complications study18

(EDC) and the Coronary Artery Calcification in Type 1 Diabetes study (CACTI) (shown in Fig.19

1) [20-23]. Subjects were included based on the following criteria: eGFR ≥ 30 ml/min/1.73m2 at20

baseline, follow up of at least 2 years, ≥ 3 longitudinal eGFR measurements, and baseline urine21

and blood sample availability. In FinnDiane, cases and controls were frequency-matched by22

albuminuria strata (normoalbuminuria, microalbuminuria, macroalbuminuria). In the three23
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remaining cohorts, all participants who met the definition of case or control and met the stated1

criteria were included. To maintain consistency across cohorts given their extended durations, only2

participants examined between 1995 and 2011 were included.3

Details on protocols and data collection for each cohort have been previously published4

and are summarized in the Supplementary Text. Briefly, the FinnDiane cohort includes adults with5

T1D from healthcare centers across Finland who were evaluated regularly [20]. The Steno cohort6

includes adults with T1D who attended the Steno Diabetes Center Copenhagen and were followed7

for a median of 4.7 years [21]. The EDC cohort includes subjects with childhood-onset T1D8

diagnosed or seen within one year of diagnosis at Children’s Hospital of Pittsburgh between 1950-9

1980 who were examined in 1986-88, then biennially for 10 years with additional examinations at10

18 and 25 years [22]. The CACTI cohort includes adults with T1D without a history of11

cardiovascular disease at enrollment who were assessed at a baseline examination, then 3 and 612

years later [23].13

14

Outcome15

Glomerular filtration rate was estimated using the CKD-EPI creatinine equation in all16

cohorts [24]. Laboratory methods for serum creatinine measurements differed by study cohort and17

are detailed in the Supplementary Text. Annual rate of eGFR decline was calculated by fitting18

regression lines to serial eGFR values (FinnDiane, Steno) or by dividing absolute eGFR change19

from baseline to last study visit by the number of years between these (EDC, CACTI).20

21

Measurement of biological samples22
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Baseline timed urine and fasting plasma samples were obtained from each cohort.1

Coordinated shipping and storage efforts were undertaken to preserve biosample integrity and2

reduce the number of freeze-thaws. Frozen biosamples were stored in a central laboratory at3

University of California San Diego (UCSD), where they were entered into a sample-tracking4

database. Sample aliquots were transferred to platform sites for omics analysis and remain stored5

at -80°C.6

Targeted metabolomic, lipidomic, and proteomic measurements and analyses are currently7

being performed concurrently at UT Health Science Center San Antonio/UCSD, University of8

Michigan, and University of Washington, respectively. Biomarkers measured in each platform are9

pre-specified based on existing scientific evidence of an association with DKD (Supplementary10

Table 1). Biomarkers are being quantified using targeted mass-spectrometry with inclusion of11

stable isotope-labeled standards to enhance accuracy and reduce variation across measurements.12

Strict quality control methods are employed to monitor instrument accuracy and batch-to-batch13

variation. The same techniques are being used to measure biomarkers in discovery and validation14

sets. Biomarkers that differ significantly between cases and controls will be considered for more15

precise quantification using orthogonal high throughput, quantitative assays.16

17

Metabolomics18

Previously, 13 out of 94 urine metabolites were found to differ between DKD and diabetes19

alone in a cross-sectional study of 108 participants [25]. These 13 metabolites, along with select20

organic acids, amino acids, purines, and pyrimidines identified by collaborators as being associated21

with DKD, are being measured in baseline urine and plasma samples using targeted gas22
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chromatography-mass spectrometry (GC-MS) and tandem liquid chromatography-mass1

spectrometry (LC-MS) techniques [26,27].2

3

Lipidomics4

Earlier works identified plasma lipid alterations associated with CKD and T2 DKD5

progression [28-30]. A targeted LC-MS/MS assay was developed to quantify free fatty acids,6

acylcarnitines, and other members of complex lipid classes hypothesized to have an association7

with rapid eGFR decline in T1D. This targeted platform is being applied to baseline plasma8

samples.9

10

Proteomics11

Urine proteins were selected for measurement following a comprehensive literature review12

which identified 179 candidate proteins from 12 signaling pathways involved in DKD across13

animal and human studies. Thirty-eight tryptic peptides derived from 20 of these proteins could be14

reliably measured using protein precipitation and proteolysis-LC-MS/MS with adequate15

sensitivity and specificity. These peptides are being quantified using LC-MS/MS in baseline urine16

samples.17

18

Statistical analyses19

Clinical variable association and prediction studies20

We developed and evaluated models of eGFR decline using clinical covariates to21

understand these associations and provide a foundation for biomarker analyses.22
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We first summarized the distribution and central tendencies of clinical variables, then fit1

clinical covariate data in logistic regression models to test associations of clinical variables with2

case versus control status. We developed three nested models: Model 1 included demographics3

(age at entry and sex); Model 2 included demographics, diabetes duration, and baseline HbA1c4

levels, urine albumin-creatinine ratio (UACR), and mean arterial pressure (MAP, defined as5

[(systolic blood pressure + (2 × diastolic blood pressure))/3]); Model 3 added baseline eGFR level6

to Model 2. Odds ratios with 95% CIs were calculated for each variable.7

Area under the Receiver Operating Characteristic curve (AUC) values were calculated to8

evaluate model discrimination, and DeLong’s test was used to compare nested model AUCs [31].9

To accurately estimate model performance in future samples, we used repeated random sub-10

sampling validation, training models on a random 4/5th of the sample then testing these on the11

held-out 1/5th. AUCs were calculated on the 1/5th sample. This training-testing process was12

repeated 500 times providing a distribution of test AUC estimates, from which a median and 95%13

CI were estimated.14

Next, we compared model parameters according to four baseline eGFR strata:15

30≤eGFR≤60 ml/min/1.73m2; 60<eGFR≤90 ml/min/1.73m2; 90<eGFR≤120 ml/min/1.73m2; and16

120<eGFR≤150 ml/min/1.73m2. Interaction terms between this categorical eGFR variable and17

covariates were tested via likelihood ratio tests. If model fit improved significantly at 5%18

significance, separate models were fit for each stratum and cross-validated AUCs were calculated19

for stratified models. Finally, to test if the stratum-specific models improved discrimination, we20

used bootstrap resampling to compare AUCs of stratified and full models [32]. AUCs were21

calculated on each of 500 bootstrap samples. The difference between the full sample and stratum-22

specific AUCs were recorded. The 500 bootstrapped differences were used to calculate percentile23
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intervals and test if stratum-specific AUCs differed from the full sample AUC. If the interval1

excluded zero, we inferred that the AUCs were statistically different. This analysis was repeated2

for baseline albuminuria strata defined by normoalbuminuria (UACR <30mg/g),3

microalbuminuria (30≤UACR<300 mg/g), and macroalbuminuria (UACR ≥300mg/g). When4

sample size was sufficient, we examined combined albuminuria and eGFR subgroups.5

6

RESULTS7

Participant characteristics8

Our sample comprised 1430 subjects from the four T1D cohorts, including 535 cases and9

895 controls (Table 1). Subjects’ mean age was 43 years, 50% were female, and mean (SD)10

diabetes duration was 26.8 (12.6) years. The mean (SD) HbA1c and eGFR were 8.5 (1.3)% and11

94 (24) ml/min/1.73m2, respectively, and median UACR (25th, 75th %ile) was 12 (5, 64) mg/g.12

Subjects were followed for a median (25th, 75th %ile) of 7.6 (4.9, 11.7) years.13

Compared with control participants, cases were on average younger, had higher average14

baseline levels of HbA1c, blood pressure, eGFR, and UACR compared to controls (Table 1). The15

mean (SD) annual eGFR slope  was -5.65 (4.53) ml/min/1.73m2 in cases, versus 0.57 (1.87)16

ml/min/1.73m2 in controls.17

18

Characteristics associated with eGFR decline19

Younger age at study entry was associated with greater risk of rapid eGFR decline in the20

demographics-only model (Model 1), which had an AUC of 0.61 (Table 2). In Model 2, younger21

age, higher HbA1c, and higher UACR were associated with rapid eGFR decline. Compared to the22

demographics-only model, Model 2 had a significantly higher AUC of 0.69 (p = 0.0015). In the23
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fully-adjusted model (Model 3) comprising demographic and clinical variables, younger age,1

longer diabetes duration, and higher HbA1c, UACR, and eGFR conferred greater risk of rapid2

eGFR decline. Specifically, every 10 more years of age was associated with a 24% lower odds of3

rapid eGFR decline, every 10 more years of diabetes duration was associated with a 20% higher4

odds of rapid eGFR decline, each 1% higher HbA1c was associated with a 15% higher odds of5

rapid eGFR decline, each two-fold greater UACR was associated with a 30% higher odds of rapid6

eGFR decline, and every 10 ml/min/1.73m2 greater baseline eGFR was associated with a 31%7

higher odds of rapid eGFR decline. Compared to the demographics-only model, Model 3 had a8

significantly higher AUC of 0.74 (p < 0.001).9

10

Consideration of additional risk factors11

When added to Model 3, the presence of hypertension (as a binary indicator) was12

significantly associated with rapid eGFR decline (OR 1.46; 95% CI 1.09, 1.96). Neither13

angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) use,14

presence of retinopathy, nor smoking history (past, current, never smoker) were significantly15

associated with rapid eGFR decline. When added to Model 3, neither the presence of hypertension,16

ACEi or ARB use, the presence of retinopathy, nor smoking history improved model17

discrimination. Thus, we conducted all subsequent subgroup analyses based on Model 3 to18

minimize the impact of missing information (Supplementary Table 2).19

20

Subgroup analysis21

Addition of interactions between baseline eGFR or UACR strata and clinical variables22

improved the fit of the logistic model significantly (likelihood ratio p-value < 0.001). Hence, we23
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applied Model 3 to eGFR, UACR, and combined eGFR and UACR strata with sufficient sample-1

sizes (Supplementary Table 2). The directions of association for the predictors with rapid eGFR2

decline in the stratified models were similar to those in the full cohort models. Notably, the3

magnitude of the association of UACR with rapid eGFR decline was greater in the eGFR 60-4

90ml/min/1.73m2 group (OR 1.39; 95% CI 1.27, 1.53) compared to groups with higher eGFRs5

(OR 1.10-1.24). Additionally, while higher HbA1c was significantly associated with rapid eGFR6

decline in groups with microalbuminuria (OR 1.36; 95% CI 1.14, 1.65) and macroalbuminuria7

(OR 1.66; 1.24, 2.29), this association was not observed in the normoalbuminuria group.8

Figure 2 depicts the median (95% CIs) cross-validated AUCs. There was substantial9

variability in discrimination across baseline kidney function categories compared to the full cohort10

AUC, with cross-validated AUCs ranging from 0.59 to 0.76. The lowest AUCs were observed in11

the eGFR 120-150 ml/min/1.73m2 group (AUC 0.59), the macroalbuminuria group (AUC 0.65),12

and the combined normoalbuminuria and eGFR 90-120 ml/min/1.73m2 group (AUC 0.65).13

14

DISCUSSION/CONCLUSION15

We have assembled a collection of well-defined T1D cohorts to identify biomarkers16

associated with rapid eGFR decline. While demographic and clinical variables were significantly17

associated with rapid eGFR decline in these cohorts, these do not predict rapid eGFR decline with18

sufficient precision. Our expectation is that omics-derived urine and plasma biomarkers will be19

associated with rapid eGFR decline, independent of demography and clinical variables, and20

enhance the predictive ability of our models.21

Our use of four large, multi-national, rigorously-derived T1D cohorts leaves us well-22

positioned to identify biomarkers associated with rapid eGFR decline. These T1D cohorts have23
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large sample sizes, prolonged follow-up, and excellent participant retention. Additionally, each1

cohort has used standardized methods for participant recruitment, data collection, and biosample2

preservation. Furthermore, availability of timed urine and fasting plasma samples in all cohorts3

increases the precision of biomarker measurements and facilitates comparisons across cohorts. The4

clinical models developed here will be used as the base for discovery and validation omics5

analyses. Biomarkers associated with rapid eGFR decline will be incorporated into predictive6

models made using clinical variables and AUC values for these will be calculated to assess model7

discrimination.8

We found that younger age, longer diabetes duration, and higher baseline HbA1c, UACR,9

and eGFR were associated with rapid eGFR decline in our study population. Overall, these10

findings are consistent those observed in other T1D and T2D populations [33-36]. Notably, a two-11

fold higher UACR was associated with 30% greater odds of rapid eGFR decline in our fully-12

adjusted model. However, this association is difficult to interpret and may be biased towards the13

null because of matching of case-control status by albuminuria strata in one of our study cohorts.14

To build a foundation for assessing the predictive ability of measured biomarkers, we derived15

prognostic models using these clinical variables. We found that overall model discrimination was16

moderate (AUC = 0.74) using age, sex, diabetes duration, HbA1c, blood pressure, albuminuria,17

and baseline eGFR as predictors of rapid eGFR decline. Similarly-derived models focusing on18

incident DKD or major kidney-related events as outcomes have had greater predictive success [14,19

37].20

The relatively low discriminatory potential of our model could be explained by our focus21

on an outcome which occurs early in the course of DKD as well as by the high average baseline22

eGFR in our cohort [33]. Interaction testing confirmed that associations between covariates and23
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rapid eGFR decline differed according to baseline kidney function. Subgroup analyses revealed1

that model discrimination varied by strata of baseline eGFR and albuminuria. Specifically, the2

model demonstrated poor predictive ability among those with baseline eGFR 120-3

150ml/min/1.73m2 (AUC = 0.59), baseline macroalbuminuria (AUC = 0.65), and baseline eGFR4

90-120ml/min/1.73m2 and normoalbuminuria (AUC = 0.65). The difficulty in predicting eGFR5

decline in these subgroups may reflect variable biologic underpinnings of eGFR decline, though6

regression to the mean may also contribute to these findings. Overall, weak-to-moderate AUCs,7

especially when eGFR and albuminuria are in the normal range, highlight the need for prognostic8

biomarkers capable of early identification of high-risk individuals.9

Using novel, targeted omics strategies, we plan to identify plasma and urine biomarkers10

associated with rapid eGFR decline which elucidate mechanisms of T1 DKD and build on clinical11

predictive models. Numerous biomarkers belonging to pathways implicated in DKD, including12

inflammation, endothelial dysfunction, and fibrosis, have been associated with DKD-related13

outcomes in cross-sectional and longitudinal studies [11]. At the same time, questions remain14

regarding the specific molecules comprising these pathogenic pathways and how they contribute15

to eGFR decline in DKD. This is partly because of heterogeneity across existing studies in clinical16

outcomes, chosen biomarkers, and methods of biomarker quantification, which has made17

biomarker validation challenging [11].18

There has been increasing interest in the association of biomarkers with eGFR decline in19

DKD [38, 39]. Our panel of 13 urine metabolites was recently found to correlate with eGFR slope20

in 1,001 subjects with T2D in the Chronic Renal Insufficiency Cohort study [40]. Notably, this21

panel was responsive to therapy with dapagliflozin and atrasentan, suggesting potential as a22

surrogate indicator for mitochondrial dysfunction in T2D [41,42]. Members of our group have also23
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identified 125 plasma metabolites associated with eGFR in a meta-analysis including 3,0891

samples from participants of five independent Dutch T2D cohort studies [19]. Similar biomarker2

advances have also been made in T1D, albeit in relatively smaller study populations. Serum3

lipidomic measurements of 669 individuals with T1D from Steno identified cross-sectional4

associations between phosphatidylcholine and sphingomyelin species and eGFR and albuminuria,5

out of which 13 lipids were longitudinally associated with eGFR or albuminuria slope [15]. Serum6

metabolomic measurements in this cohort additionally revealed ribonic acid and myo-inositol to7

be inversely associated with >30% eGFR decline [16] Also, in a study of 465 individuals with8

T1D from CACTI, a panel of 4 out of 252 urine peptides identified in a label-free discovery9

analysis improved prediction of annual eGFR decline > 3.3% and/or development of albuminuria10

when added to DKD risk factors (increase in AUC from 0.84 to 0.89) [43].11

These promising results underscore the need to further study eGFR decline in T1D using12

large cohorts and refined, combined multi-omic assays. In our study we propose to use these13

strategies to develop a robust set of biomarkers which are specific to this population, internally14

and externally validated, and have multi-national applicability. Additionally, our use of a15

hypothesis-driven, targeted omics approach that will yield highly precise, quantitative, and16

reproducible results is conducive to our goals of deciphering mechanisms of eGFR decline and17

improving prediction of this outcome.18

Our work may serve as a foundation on which future omics research can build. Added19

insight into pathological pathways may encourage generation of new diagnostic tests and therapies.20

Following extensive validation and assay optimization, identified biomarkers may be able to act21

as surrogates for risk of eGFR decline in T1D. This could facilitate recruitment and increase22

efficiency in clinical trials, as those at increased risk for poor outcomes are more likely to benefit23
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from therapeutic interventions. Ultimately, we hope to integrate metabolomic, lipidomic, and1

proteomic biomarker data with kidney tissue-derived genetic and transcriptional network data2

using systems biology and computational bioinformatic techniques with the goal of3

mechanistically defining pathologic DKD subgroups. By then associating molecularly defined4

subgroups with clinical characteristics and kidney outcomes, we aim to develop a functional5

framework for rapid eGFR decline in T1D.6

Our study has several limitations. Our population is primarily white, limiting applicability7

of results to wider ranges of races and ethnicities. We defined case-control status using a linear8

estimation of eGFR decline, though eGFR trajectories may exhibit non-linear patterns. However,9

existing evidence suggests that non-linear eGFR decline occurs only in a minority [33]. A10

substantial proportion of our study population has a baseline eGFR >90 ml/min/1.73m2, a range in11

which changes in eGFR are difficult to ascertain. The observation that cases had higher baseline12

eGFR than controls is likely due to participant selection, as subjects with higher baseline eGFR13

have more capacity to reach the threshold for case definition. In this group, a “therapeutic” decline14

in eGFR resulting from reduced “hyperfiltration” is difficult to distinguish from a “pathologic”15

one. We have defined rapid versus slow decline based on extremes of the eGFR slope distribution16

and have determined slopes over prolonged follow-up periods, which should reduce17

misclassification. At the same time, since models were developed using extremes of the eGFR18

slope distribution, the discriminatory ability of these models would be attenuated by application19

to a broader cohort with a wide range of eGFR slopes. Also, as mentioned above, the association20

of UACR with rapid eGFR decline should be interpreted with caution due to matching of case-21

control status by albuminuria strata in one of our study cohorts. With respect to our biomarker22

analyses, prolonged storage and inconsistencies in biosample collections across cohorts could23
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influence the accuracy and sensitivity of measurements. Additionally, though biomarkers present1

in small quantities may be difficult to detect, our targeted approach represents the optimal strategy2

for increasing measurement precision.3

In conclusion, we have assembled a large, multinational T1D cohort for determining4

metabolic, lipid, and protein biomarkers associated with rapid eGFR decline. In this cohort, clinical5

factors alone are insufficient in predicting rapid eGFR decline, especially among those with normal6

baseline kidney function. Our application of novel, targeted omics approaches may help improve7

understanding of the mechanisms underlying rapid eGFR decline and may facilitate identification8

of those at risk for this outcome.9

10
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FIGURE LEGENDS1
2

Fig. 1. Study design of JDRF Biomarkers Consortium, a case-control study nested in four T1D3
cohorts.4

5
Fig. 2. Performance of demographic and clinical variables in the prediction of rapid eGFR loss6
according to baseline eGFR and urine albumin-creatinine ratio. Presented values are cross-7
validated area under the curve (AUC; median 95% CI).8

9



Table 1: Baseline characteristics of participants in the JDRF Biomarkers Consortium by cohort
and case-control status

Overall
n = 1430

By cohort By case-control status
FinnDiane

n = 578
Steno

n = 362
EDC

n = 146
CACTI
n = 344

Case*
n = 535

Control**
n = 895

Cases 535 (37) 299 (52) 53 (15) 66 (45) 117 (34) - -
Demographics

Female sex 721 (50) 300 (52) 154 (43) 75 (51) 192 (56) 277 (52) 444 (50)
Age (years) 42.8 (12.7) 41.3 (12.4) 52.8 (12.0) 37.3 (7.9) 37.2 (9.1) 39.6 (12.6) 44.7 (12.4)
Race & ethnicity

White 1400 (98) 578 (100) 362 (100) 140 (96) 320 (93) 518 (97) 882 (99)
Black 11 (1) 0 (0) 0 (0) 6 (4) 5 (1) 6 (1) 5 (1)
Hispanic 10 (1) 0 (0) 0 (0) 0 (0) 10 (3) 8 (1) 2 (0)

Smoking history
Never 579 (40) 266 (46) 0 (0) 91 (62) 222 (65) 245 (46) 334 (37)
Past 238 (17) 131 (23) 0 (0) 33 (23) 74 (22) 103 (19) 135 (15)
Current 213 (15) 153 (26) 0 (0) 16 (11) 44 (13) 114 (21) 99 (11)

Medical history and clinical
characteristics

Diabetes duration (years) 26.8 (12.6) 25.6 (12.3) 30.9 (16.0) 29.3 (7.6) 23.5 (9.0) 25.8 (12.2) 27.4 (12.8)
Retinopathy status

Present 658 (46) 263 (46) 228 (63) 71 (49) 96 (28) 235 (44) 423 (47)
Not present 709 (50) 309 (53) 77 (21) 75 (51) 248 (72) 278 (52) 431 (48)

Mean Arterial Pressure
(mmHg)

94.6 (11.3) 98.6 (11.1) 96.4 (10.2) 85.3 (9.4) 90.2 (9.5) 95.8 (11.7) 94.0 (11.0)

Systolic Blood Pressure
(mmHg)

129.9
(19.5)

137.0 (18.7) 136.5
(17.0)

116.3
(14.9)

116.8
(14.5)

131.3 (20.6) 129.1 (18.7)

Diastolic Blood Pressure
(mmHg)

77.0 (10.2) 79.3 (10.2) 76.4 (10.4) 69.8 (9.7) 76.8 (8.8) 78.0 (10.6) 76.4 (10.0)

ACEi or ARB use
Yes 440 (31) 290 (50) 230 (64) 33 (23) 117 (34) 246 (46) 424 (47)
No 624 (44) 284 (49) 132 (36) 113 (77) 227 (66) 286 (53) 470 (53)

Hypertension diagnosis
Yes 643 (45) 395 (68) 74 (20) 25 (17) 149 (43) 283 (53) 360 (40)
No 725 (51) 179 (31) 231 (64) 121 (83) 194 (56) 230 (43) 495 (55)

Laboratory data at baseline
HbA1c (%) 8.5 (1.3) 8.7 (1.6) 8.7 (0.7) 8.4 (1.4) 8.1 (1.3) 8.7 (1.6) 8.3 (1.1)
eGFR (ml/min/1.73m2) 94 (24) 94 (25) 87 (15) 102 (17) 97 (30) 100 (27) 90 (21)
UACR (mg/g), median
(IQR)

12 (5.2-
63.5)

23.4 (6.4-
123.5)

13.0 (6.0-
41.0)

13.6 (6.8-
47.8)

6.3 (4.2-
16.6)

20.8 (6.4-
196.6)

9.3 (5.0-
35.3)

UACR group (mg/g)
Macro: > 300 mg/g 143 (10) 80 (14) 24 (7) 13 (9) 26 (8) 99 (19) 44 (5)

Micro: >30, < 300 mg/g 323 (23) 159 (28) 91 (25) 34 (23) 39 (11) 134 (25) 189 (21)
Normal < 30 mg/g 881 (62) 286 (49) 246 (68) 99 (68) 250 (73) 269 (50) 612 (68)

eGFR slope
(ml/min/1.73m2/y)

-1.8 (4.4) -3.0 (4.0) -0.2 (5.0) -2.5 (2.7) -1.1 (4.2) -5.7 (4.5) 0.6 (1.9)



* Case: eGFR slope/yr ≤ -3 ml/min/1.73m2

**Control: eGFR slope/yr > -1 ml/min/1.73m2

Entries are mean (SD) for continuous variables and N (%) for categorical variables, unless otherwise
indicated. Percentages are calculated as percent of total values.

Number (%) of missing values for each variable in the overall study population: race & ethnicity 9 (1),
smoking history 400 (28), diabetes duration 1 (<1), retinopathy status 63 (4), MAP 7 (<1), SBP 7 (<1),
DBP 7 (<1), antihypertensive medication 4 (<1), hypertension diagnosis 62 (4), HbA1c 8 (1), baseline
UACR 83 (6).

JDRF = Juvenile Diabetes Research Foundation; CACTI = Coronary Artery Calcification in Type 1
diabetes study; EDC = Pittsburgh Epidemiology of Diabetes Complications study; FinnDiane = Finnish
Diabetic Nephropathy Study; Steno = Steno Diabetes Center Study; ACEi = angiotensin-converting
enzyme inhibitor; ARB = angiotensin receptor blocker



Table 2: Associations of clinical characteristics with rapid eGFR decline among participants from
the JDRF Biomarkers Consortium

Model 1
OR (95% CI)

Model 2
OR (95% CI)

Model 3
OR (95% CI)

Age (per 10 years) 0.72  (0.66, 0.79)* 0.63  (0.56, 0.72)* 0.76  (0.66, 0.87)*
Sex (ref: female) 0.99  (0.80, 1.24) 0.89  (0.70, 1.13) 0.82  (0.64, 1.05)
Diabetes duration (per 10 years) 1.13  (0.99, 1.29) 1.20 (1.05, 1.37)*
HbA1c (per 1%) 1.17  (1.07, 1.29)* 1.15  (1.05, 1.27)*
Mean Arterial Pressure (per 10
mmHg)

1.08  (0.96, 1.21) 1.11  (0.99, 1.25)

UACR (per doubling) 1.19  (1.13, 1.25)* 1.30  (1.23, 1.38)*

eGFR (per 10 ml/min/1.73m2) 1.31  (1.23, 1.41)*

AUC median
(95% CI)

0.61  (0.56, 0.67) 0.69  (0.63, 0.75) 0.74  (0.68, 0.79)

Full Cohort:  N = 1430; N (cases) = 535. Cell contents are odds ratios (OR) and 95% CI from logistic
regression models, as well as cross-validated area under the curve (AUC; median 95% CI).

*p < 0.05



Fig. 1. Study design of JDRF Biomarkers Consortium, a case-control study nested in four T1D
cohorts.



Fig. 2. Performance of demographic and clinical variables in the prediction of rapid eGFR loss
according to baseline eGFR and urine albumin-creatinine ratio.

Presented values are cross-validated area under the curve (AUC; median 95% Cl).
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Supplementary Text: Description of the four study cohorts

The Finnish Diabetic Nephropathy (FinnDiane) study cohort

The FinnDiane study is a prospective nationwide multicenter study of more than 8,400 adults

with T1D from 21 university and central hospitals, 33 district hospitals, and 26 primary health care

centers across Finland and is the largest natural history study for T1D and its complications [1]. Patients

are followed on a yearly basis and kidney function is measured via urine albumin excretion rates and

eGFR measurements. The current study comprises 578 cases and controls studied between 1998 and

2011. Patients participated in the study during a regular visit to their attending physician during which

detailed demographic and medical history data were collected with standardized questionnaires. Blood

pressure was measured two times with 2-min intervals in the sitting position after an initial 10-min rest

and the mean values were used for analysis. Hypertension was defined as > 130/85 mmHg over two

readings or use of antihypertensive medication. HbA1c was measured with standard methods at the local

centers; eGFR was estimated from serum creatinine values by the CKD-EPI equation [2]. Annual rate of

eGFR change was calculated by fitting regression lines to serial eGFR measures for each patient. A

participant was classified as having retinopathy if he/she received laser treatment. In a subset of 1,346

FinnDiane patients, that had been ETDRS graded from fundus photographs and ophthalmic records, we

observed that 81.1% of laser-treated patients eventually were diagnosed with proliferative diabetic

retinopathy [3]. This suggests that laser treatment could be used as a surrogate for severe retinopathy in

FinnDiane. As the training of the Finnish ophthalmologists is uniform (one main instructor in the

country the last 35 years) the indications for laser treatment at different centers are consistent.

All participants gave written consent prior to participation, and the study protocol was approved

by the local ethics committees of each participating center. The study is performed in accordance with

the Declaration of Helsinki as revised in the year 2000.
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The Steno study cohort

The Steno Diabetes Center Copenhagen (SDCC) is specialized in the treatment, research and

prevention of diabetes and in the education of healthcare professionals [4]. It is Scandinavia’s largest

diabetes clinic (www.sdcc.dk).

The current study cohort is comprised of Caucasian adults (age ≥18 years) with T1D attending

the SDCC out-patient clinic. Their follow up time ranges from 4 to 10 years (median 4.65 years). The

SDCC T1D sample may be sub-grouped on the basis of their baseline examination dates. The first set of

T1D cases was enrolled between May 1995 to April 1996 while participating in the Low Protein Diet

(LPD) study with a T1D onset of at least 10 years [5]. The second set of T1D cases were enrolled in

2004 for a study of biomarkers related to nephropathy, while the last set of T1D cases were enrolled

between 2009-2011 and participated in a study of biomarkers of nephropathy and arterial stiffness [6,7].

Patient demographics, biochemical measurements, and medical history data were collected at

each follow-up visit. Blood pressure measures were recorded with either a validated tonometric device

(BPro; HealthStats, Singapore), or using the Hawksley Random Zero Sphygmomanometer, with a mean

of at least two measures [5,7]. Hypertension was defined as use of antihypertensive medication. High-

performance liquid chromatography (Bio Rad Laboratories, Munich, Germany) was used to estimate

HbA1c (normal range: 4.1-6.4%) and an enzymatic method (Hitachi 912; Roche Diagnostics,

Mannheim, Germany) was used to measure serum creatinine concentrations [7]. Urinary albumin

excretion ratio (UAER) was measured in 24-h sterile urine collections by enzyme immunoassay; eGFR

was calculated using the CKD-EPI creatinine equation. The rate of decline in kidney function was

analyzed with regression lines for eGFR over the follow-up period using all measurements of eGFR

during the study period. Retinopathy was assessed via retinal photographs taken during regular

ophthalmologic examinations. All participants gave written informed consent, and the study was

approved by the Danish National Ethics committee. A total of 362 Steno cases and controls are included

in the current analysis.
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Epidemiology of Diabetes Complications (EDC) study cohort

The EDC is a prospective historical cohort study based on incident cases of childhood onset (<17

years) T1D, diagnosed or seen within one year of diagnosis (1950-80) at Children’s Hospital of

Pittsburgh [8]. The cohort, which has been shown to be epidemiologically representative of the

Allegheny County, Pennsylvania, T1D population, was first assessed for the EDC study between 1986

and 1988 (mean participant age and diabetes duration were 28 and 19 years, respectively) [9].

Subsequently, biennial examinations were conducted for 10 years, with a further detailed examination at

18 and 25 years from enrollment. All EDC study participants provided informed consent, and all study

procedures were approved by the University of Pittsburgh Institutional Review Board (IRB).

Demographic, health, self-care and medical history data were collected at each follow-up. Blood

pressure was measured with a random zero sphygmomanometer, after a five-minute rest  and

hypertension was defined as > 140/90 mmHg or use of antihypertensive medication. Automated high-

performance liquid chromatography (Diamat; Bio-Rad, Hercules, CA) was performed for Hemoglobin

A1c (HbA1c) [10]. Glomerular filtration rate was estimated by the CKD-EPI creatinine equation.

Retinopathy was classified according to the modified Airlie House classification; the methodology has

been described in detail elsewhere [11]. Proliferative retinopathy was defined as a grade of ≥60 in at

least one eye or a history of panretinal photocoagulation for proliferative diabetic retinopathy. To

achieve reasonable temporal comparability to the other cohorts, the current study used the years 1996-98

to define the baseline measure; 146 such participants (cases and controls) met the criteria and are

included in the present study. Annual rate of eGFR change was calculated using the difference between

the first (1996-98 exam) and last available eGFR (2001-03 or 2004-06 exam) and dividing by the

number of years between the two measures.
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Coronary Artery Calcification in Type 1 Diabetes (CACTI) study cohort

The CACTI study enrolled 652 adults ranging in age from 19-56 years between 2000-2002 into a

prospective cohort study designed to examine cardiovascular and related complications of T1D [12]. All

participants were free of diagnosed cardiovascular disease, and did not have a cardiovascular event

(myocardial infarction, angioplasty or coronary artery bypass graft). Participants were either diagnosed

with T1D before the age of 30, or if diagnosed over age 30, they had positive autoantibodies or a clinical

course consistent with T1D. All were on insulin within a year of diagnosis and at the time of enrollment.

Participants have been followed longitudinally at three and six years for complications, including

diabetic nephropathy. All study participants provided informed consent, and the study was approved by

the Colorado Multiple IRB.

Demographic, health, self-care and medical history data were collected at baseline and at three

subsequent follow-up examinations. Blood pressure was measured three times via random zero

sphygmomanometer, after a five-minute rest, and the second and third measurements were averaged.

Hypertension was defined as >140/90 mmHg or use of antihypertensive medication. HbA1c was assayed

by high performance liquid chromatography (BioRad Variant). A participant was classified as having

retinopathy if he/she received laser treatment. Glomerular filtration rate was estimated by the CKD-EPI

creatinine equation. Average annual decline in eGFR was calculated as absolute change in eGFR from

the baseline exam to the last visit in the study divided by the number of years between these two visits.

The current analysis is based on 344 patients (with fast (cases) or slow (controls) kidney function

decline) from the CACT1 cohort.
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Supplementary Table 1: Biomarkers measured using targeted omics assays in the JDRF
Biomarkers Consortium

Project Measured biomarkers

Metabolomics

2-Methyl acetoacetate
2-Hydroxybutyrate
2-Hydroxyglutaric acid
2-Hydroxyisovaleric acid
2-Ketoadipic acid
2-Ketoglutaric acid
2-Ethyl-3-hydroxyproprionate
3-Hydroxyisobutyrate
3-Hydroxyisovalerate
3-Hydroxypropionate
3-Hydroxyadipic acid
3-Hydroxybutyric acid
3-Hydroxyglutaric acid
3-Methyladipic acid
3-Methylcrotonylglycine
3-Methylglutaconic acid
4-Aminobutyric acid
4-Hydroxyhippurate
4-Hydroxyphenyllactic acid
Acetoacetic acid
Aconitic acid
Adipic Acid

Citric acid
Ethylmalonic acid
Fumaric acid
Glycolic acid
Glyoxylic acid
Hippuric acid
Homovanillic acid
Hydrocinnamic acid
Isocitric acid
Lactic acid
Malic acid
Methylsuccinic acid
N-Acetylaspartate
N-Acetyl-L-tyrosine
Palmitic acid
Pyruvic acid
Stearic acid
Succinic acid
Tiglylglycine
Uracil
Uric acid

Lipidomics*

Free fatty acids
Lysophosphatidylcholines
Sphingomyelins
Phosphatidylcholines
Triglycerols

Diacylglycerols
Cholesteryl esters
Phosphatidylethanolamines
L-carnitine
Acylcarnitines

Proteomics

Podocalyxin
Renin receptor
Urokinase-type plasminogen activator
Epidermal growth factor
Collagen alpha-1(I) chain
Collagen alpha-1(III) chain
Intracellular adhesion molecule 1
Cathepsin D
Matrix metalloproteinase 7
Cytosolic non-specific dipeptidase 2

Insulin-like growth factor binding protein 2
Insulin-like growth factor binding protein 3
Insulin-like growth factor binding protein 7
Vascular cell adhesion protein 1
Connective tissue growth factor
Syndecan-4
Aquaporin-2
Selenoprotein P
Urokinase receptor
Endothelial cell-selective adhesion molecule

*326 lipid species measured across the listed lipid classes.
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Supplementary Table 2: Associations of clinical characteristics with rapid eGFR decline stratified
by baseline eGFR and UACR in the JDRF Biomarkers Consortium

Baseline eGFR Baseline UACR Combination of
90 < eGFR ≤

120 and
normoalbumin-

uria*

N (cases) =
434 (140)

60 < eGFR ≤90
ml/min/1.73m2

N (cases) = 511
(129)

90 < eGFR ≤ 120
ml/min/1.73m2

N (cases) = 638
(236)

120 < eGFR ≤150
ml/min/1.73m2

N (cases) =
166 (117)

Macro: >
300 mg/g

N (cases) =
143 (99)

Micro:
>30, < 300
mg/g

N (cases) =
323 (134)

Normo: <
30 mg/g

N (cases) =
881 (269)

Age
(per 10 years)

0.99
(0.71, 1.14)

0.82
(0.66, 1.03)

0.80
(0.44, 1.45)

1.12
(0.68, 1.89)

0.72
(0.55, 0.93)

0.91
(0.74, 1.11)

0.79
(0.60, 1.04)

Sex
(Ref: female)

1.04
(0.64, 1.68)

0.81
(0.56, 1.15)

0.47
(0.21, 1.02)

1.63
(0.71,
3.81)c

1.25
(0.77, 2.05)

0.58
(0.41, 0.81)

0.68
(0.44, 1.05)

Diabetes
duration
(per 10 years)

1.16
(0.93, 1.47)

1.31
(1.08, 1.60)

1.48
(0.82, 2.73)

0.93
(0.53, 1.61)

1.25
(0.95, 1.66)

1.34
(1.13, 1.61)

1.30
(1.04, 1.64)

HbA1c
(per 1%)

1.21
(0.97, 1.53)

1.26
(1.10, 1.45)

0.98
(0.77, 1.25)

1.66
(1.24, 2.29)

1.36
(1.14, 1.65)

1.08
(0.94, 1.24)

1.22
(1.02, 1.46)

Mean arterial
pressure
(per 10 mmHg)

1.20
(0.96, 1.49)

1.07
(0.90, 1.27)

0.98
(0.65, 1.49)

1.05
(0.74, 1.49)

1.14
(0.91, 1.45)

1.07
(0.91, 1.26)

1.10
(0.89, 136)

UACR (per
doubling)

1.39
(1.27, 1.53)

1.14
(1.04, 1.24)

1.10
(0.91, 1.36)

1.60
(1.07, 2.46)

1.32
(1.03, 1.70)

0.98
(0.83,
1.16)d

1.06
(0.85, 1.32)

eGFR
(per 10
ml/min/1.73m2)

0.79
(0.61, 1.03)

1.75
(1.38, 2.24)

1.97
(1.09, 3.79)

1.15
(0.99, 1.35)

1.11
(0.99, 1.24)

1.80 (1.60,
2.04)

1.83
(1.37, 2.47)

Cell contents are odds ratios (95% CI) adjusted for age, sex, diabetes duration, and baseline HbA1c,
MAP, log2(UACR), and eGFR.

*Other combinations of UACR and eGFR strata had small cell-sizes, and hence were not evaluated.

The following interactions were significant at a p < 0.10:
- eGFR(90,120]*covariate interaction significant for log2(UACR) (p=0.002), baseline eGFR (P <

0.001); Reference category: eGFR[60,90]
- eGFR(120,150]*covariate interaction marginally significant for sex (p=0.09); significant for

log2(UACR) (p=0.04), baseline eGFR (P < 0.01); Reference category: eGFR(60,90
- Macroalbuminuria*covariate interaction significant for sex (p=0.02), HbA1c (p=0.01),

log2(UACR) (p=0.03), baseline eGFR (p < 0.001); Reference category: Normoalbuminuria group
- Microalbuminuria*covariate interaction significant for sex (p=0.01), HbA1c (p=0.047),

log2(UACR) (p = 0.048), baseline eGFR (p < 0.001)
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