3D pattern adjustment during directional solidification of a transparent alloy conducted on DECLIC-DSI

F.L.Mota, J.Pereda, N.Bergeon IM2NP, CNRS Aix-Marseille Université Marseille, France

L.L.Strutzenberg

R.Trivedi **Dpt of Materials Science & Engineering** Iowa State University, Ames, USA

K.Ji, Y.Song, A.Karma **Physics Department** Northeastern University, Boston, USA

IMDEA Materials Institute. Madrid, Spain

Northeastern University

Institut Matériaux Microélectronique Nanosciences Provence

Introduction

- DECLIC-DSI instrument
- Experiments in the DECLIC-DSI

Effect of sub-boundaries on Primary spacing

- Experimental results
- Phase field simulations

Conclusion and perspectives

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

DECLIC-DSI Device

To study the microstructure formation during directional solidification

Transparent systems \rightarrow

In situ and real time observation of interfacial microstructure

Large cylindrical crucible \rightarrow

extended patterns

Onboard the ISS from 2009 to 2011 ightarrow

microgravity experiments dedicated to cellular regime

Experiments on ground \rightarrow

understand the effect of convection

Onboard the ISS from 2017 to 2018 → microgravity experiments dedicated to dendritic regime

imenp

Northeastern University

Experiments in the DECLIC-DSI

Cylindrical crucible

Diameter: 1 cm Solidification length: 10 cm SCN – 0.24 wt% camphor V: 0.1 – 30 µm/s G: 12 and 19 K/cm Solid seed: single crystal of selected orientation; kept during the whole flight campaign

Side view

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

13 cm

Axial

view

1 mm

541195936

Northeastern University

4

 $V_{\rm p} = 0 \ \mu m/s$

 $V_{\rm p} = 4 \ \mu m/s$

 $V_n = 15 \,\mu m/s$

Reference experiment

<u>39</u>aa7948

Camera : HR2

7.37 x 7.37 mm² Real duration: 9h $V_p = 2 \mu m/s$ G = 19 K/cm

- \rightarrow Pattern sliding
- \rightarrow Very few tip-splittings
- \rightarrow Areas of high elimination

Pattern analysis

5

In-house software to follow each cell in time:

- \rightarrow Primary spacing
- \rightarrow Number of 1st neighbors
- \rightarrow Trajectories (V, direction)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 number of neighbours

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Evidence of Sub-boundaries

- → All boundaries are moving due to non-negligible surface tension anisotropy
 - Confirms the sub-boundary nature
 - Even at rest, some SB are moving at very low velocity SB coarsening
- → Motion associated to numerous phenomena → dynamical reorganization

Nucleation of a new SG (on pre-existing junctions)

6

\rightarrow All the Sub-grain boundaries are fixed when morphological instability triggers

S. Bottin-Rousseau et al. PRB 66 (2012) 4102 G. Faivre et al. CR Phys 14 (2013) 149

lanosciences Provence

Effect of sub-grain on the dynamics of primary spacing

Cell trajectories analysis

Primary spacing evolution by sub-grain

- $\rightarrow\,$ Noticeable differences of λ evolution depending on sub-grain
- → Cannot be attributed to differences of misorientation (1.4° < θ (Vg) < 1.9°)

Aix*Marseille université

Boundaries configuration

- \rightarrow Initially: large distribution of λ , homogeneously distributed
- $\rightarrow \ \mbox{With time: global decrease of } \lambda \\ \underline{except \ around \ the \ divergent \ GB}$

Primary spacing map Duration: 6.5 h

- → The evolution of primary spacing strongly depends on the distance to the divergent GB (effect ≈ 20 cells)
 - → The effect of convergent GB is of shorter distance (≈ 5 cells)

IOWA STATE

UNIVERSITY

Critical role of boundaries

Northeastern University

Divergent SB: comparison experiment and PF

- \rightarrow Target condition: V_p = 2 µm/s, G = 19 K/cm
- \rightarrow Regular hexagonal array (λ = 220 µm)
- \rightarrow Simulation box: 3960.74 × 760.14 μ m²

- The plateau λ on the left is decreasing in experiment, while increasing in the 3D PF simulation
 - **Exp:** the source produces cells with smaller λ
 - **<u>PF</u>**: the source produces cells with larger λ
- The shape of the λ peak extends in simulation while becomes narrower in experiment

Long distance effect of sources?

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Convergent SB: comparison experiment and PF

- \rightarrow Target condition: V_p = 2 µm/s, G = 19 K/cm
- \rightarrow Regular hexagonal array (λ = 220 μ m)
- \rightarrow Simulation box: 3960.74 × 760.14 μ m²

- \rightarrow Mechanisms along SB
 - **Exp:** SB \approx stable, numerous eliminations
 - **<u>PF:</u>** incursions
- The λ at the SB keeps decreasing until reaches the lowest point
 - The plateau λ on the right side of **SB** is decreasing in experiment, while increasing in the 3D PF simulation
- **Exp:** the source produces cells with smaller λ
- <u>**PF:**</u> the source produces cells with larger λ

Long distance effect of sources?

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Conclusion

 \Rightarrow Success of µg experiments: extended 2D patterns of cells

 \rightarrow Benchmark data in diffusive transport mode

 \Rightarrow Critical role of sub-boundaries configuration on primary spacing evolution

 \rightarrow 3D phase simulations in progress...

 \Rightarrow 1st observation of solitary cells: 3D phase field simulations

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Aix*Marseille

DSI-R: dedicated to the dendritic regime ¹²

- \rightarrow Increase of concentration \Rightarrow **Dendrites at lower pulling rates**
- \rightarrow Study of the formation of well-developed dendritic array structures

Deepest thanks to CNES and NASA

Image IM2NP

Thank you for your attention

imenp

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

