591 research outputs found

    Atomic and Molecular Data for Optical Stellar Spectroscopy

    Get PDF
    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2- to 10-m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre (VAMDC). We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 100000 stars.Comment: Published 30 April 2015 in Physica Script

    State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98747/1/PhysFluids_23_057101.pd

    Ca(BH4)2–Mg2NiH4: on the pathway to a Ca(BH4)2 system with a reversible hydrogen cycle

    Get PDF
    The hydride composite Ca(BH4)2–Mg2NiH4 transfers all boron to MgNi2.5B2 upon dehydrogenation, avoiding boron sinks. The rehydrogenation to Ca(BH4)2 was confirmed

    The Gaia-ESO Survey: a quiescent Milky Way with no significant dark/stellar accreted disc

    Get PDF
    According to our current cosmological model, galaxies like the Milky Way are expected to experience many mergers over their lifetimes. The most massive of the merging galaxies will be dragged towards the disc-plane, depositing stars and dark matter into an accreted disc structure. In this work, we utilize the chemo-dynamical template developed in Ruchti et al. to hunt for accreted stars. We apply the template to a sample of 4,675 stars in the third internal data release from the Gaia-ESO Spectroscopic Survey. We find a significant component of accreted halo stars, but find no evidence of an accreted disc component. This suggests that the Milky Way has had a rather quiescent merger history since its disc formed some 8-10 billion years ago and therefore possesses no significant dark matter disc.Comment: 15 pages, 11 figures, accepted for publication in MNRA

    The Gaia-ESO Survey: N-body modelling of the Gamma Velorum cluster

    Get PDF
    The Gaia-ESO Survey has recently unveiled the complex kinematic signature of the Gamma Velorum cluster: this cluster is composed of two kinematically distinct populations (hereafter, population A and B), showing two different velocity dispersions and a relative ~2 km s^-1 radial velocity (RV) shift. In this paper, we propose that the two populations of the Gamma Velorum cluster originate from two different sub-clusters, born from the same parent molecular cloud. We investigate this possibility by means of direct-summation N-body simulations. Our scenario is able to reproduce not only the RV shift and the different velocity dispersions, but also the different centroid (~0.5 pc), the different spatial concentration and the different line-of-sight distance (~5 pc) of the two populations. The observed 1-2 Myr age difference between the two populations is also naturally explained by our scenario, in which the two sub-clusters formed in two slightly different star formation episodes. Our simulations suggest that population B is strongly supervirial, while population A is close to virial equilibrium. We discuss the implications of our models for the formation of young star clusters and OB associations in the Milky Way.Comment: 12 pages, 7 figures, 2 tables, Astronomy and Astrophysics, in pres

    The Gaia-ESO Survey: Detailed Abundances in the Metal-poor Globular Cluster NGC 4372

    Get PDF
    We present the abundance analysis for a sample of 7 red giant branch stars in the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part of the Gaia-ESO Survey. This is the first extensive study of this cluster from high resolution spectroscopy. We derive abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Fe, Cr, Ni, Y, Ba, and La. We find a metallicity of [Fe/H] = -2.19 ±\pm 0.03 and find no evidence for a metallicity spread. This metallicity makes NGC 4372 one of the most metal-poor galactic globular clusters. We also find an {\alpha}-enhancement typical of halo globular clusters at this metallicity. Significant spreads are observed in the abundances of light elements. In particular we find a Na-O anti-correlation. Abundances of O are relatively high compared with other globular clusters. This could indicate that NGC 4372 was formed in an environment with high O for its metallicity. A Mg-Al spread is also present which spans a range of more than 0.5 dex in Al abundances. Na is correlated with Al and Mg abundances at a lower significance level. This pattern suggests that the Mg-Al burning cycle is active. This behavior can also be seen in giant stars of other massive, metal-poor clusters. A relation between light and heavy s-process elements has been identified.Comment: 14 pages, 14 figures, accepted for publication in A&

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Chemical abundances of distant extremely metal-poor unevolved stars

    Full text link
    Aims: The purpose of our study is to determine the chemical composition of a sample of 16 candidate Extremely Metal-Poor (EMP) dwarf stars, extracted from the Sloan Digital Sky Survey (SDSS). There are two main purposes: in the first place to verify the reliability of the metallicity estimates derived from the SDSS spectra; in the second place to see if the abundance trends found for the brighter nearer stars studied previously also hold for this sample of fainter, more distant stars. Methods: We used the UVES at the VLT to obtain high-resolution spectra of the programme stars. The abundances were determined by an automatic analysis with the MyGIsFOS code, with the exception of lithium, for which the abundances were determined from the measured equivalent widths of the Li I resonance doublet. Results: All candidates are confirmed to be EMP stars, with [Fe/H]<= -3.0. The chemical composition of the sample of stars is similar to that of brighter and nearer samples. We measured the lithium abundance for 12 stars and provide stringent upper limits for three other stars, for a fourth star the upper limit is not significant, owing to the low signal-to noise ratio of the spectrum. The "meltdown" of the Spite plateau is confirmed, but some of the lowest metallicity stars of the sample lie on the plateau. Conclusions: The concordance of the metallicities derived from high-resolution spectra and those estimated from the SDSS spectra suggests that the latter may be used to study the metallicity distribution of the halo. The abundance pattern suggests that the halo was well mixed for all probed metallicities and distances. The fact that at the lowest metallicities we find stars on the Spite plateau suggests that the meltdown depends on at least another parameter, besides metallicity. (abridged)Comment: A&A in pres

    The Gaia-ESO Survey: metallicity of the Chamaeleon I star forming region

    Get PDF
    Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate members of Chamaeleon I have been observed with the high-resolution spectrograph UVES. We use the surface gravity, lithium line equivalent width and position in the Hertzsprung-Russell diagram to confirm the cluster members and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets, we confirm 15 high probability members. Considering the metallicity measurements for 9 of them, we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H]=-0.08+/-0.04 dex. This result is in agreement with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.Comment: 13 pages, 11 figures, 3 tables, Accepted for publication in Astronomy & Astrophysic

    Fermi Surface, Surface States, and Surface Reconstruction in Sr2RuO4

    Full text link
    The electronic structure of Sr2RuO4 is investigated by high angular resolution ARPES at several incident photon energies. We address the controversial issues of the Fermi surface (FS) topology and of the van Hove singularity at the M point, showing that a surface state and the replica of the primary FS due to (sqrt2 x sqrt2) surface reconstruction are responsible for previous conflicting interpretations. The FS thus determined by ARPES is consistent with the de Haas-van Alphen results, and it provides additional information on the detailed shape of the alpha, beta and gamma sheets.Comment: Final version for Physical Review Letters. Revtex, 4 pages, 4 postscript pictures embedded in the tex
    • …
    corecore