22 research outputs found

    Extramuscular Recording of Spontaneous EMG Activity and Transcranial Electrical Elicited Motor Potentials in Horses:Characteristics of Different Subcutaneous and Surface Electrode Types and Practical Guidelines

    Get PDF
    Introduction: Adhesive surface electrodes are worthwhile to explore in detail as alternative to subcutaneous needle electrodes to assess myogenic evoked potentials (MEP) in human and horses. Extramuscular characteristics of both electrode types and different brands are compared in simultaneous recordings by also considering electrode impedances and background noise under not mechanically secured (not taped) and taped conditions. Methods: In five ataxic and one non-ataxic horses, transcranial electrical MEPs, myographic activity, and noise were simultaneously recorded from subcutaneous needle (three brands) together with pre-gelled surface electrodes (five brands) on four extremities. In three horses, the impedances of four adjacent-placed surface-electrode pairs of different brands were measured and compared. The similarity between needle and surface EMGs was assessed by cross-correlation functions, pairwise comparison of motor latency times (MLT), and amplitudes. The influence of electrode noise and impedance on the signal quality was assessed by a failure rate (FR) function. Geometric means and impedance ranges under not taped and taped conditions were derived for each brand. Results: High coherencies between EMGs of needle-surface pairs degraded to 0.7 at moderate and disappeared at strong noise. MLTs showed sub-millisecond simultaneous differences while sequential variations were several milliseconds. Subcutaneous MEP amplitudes were somewhat lower than epidermal. The impedances of subcutaneous needle electrodes were below 900 Ω and FR = 0. For four brands, the FR for surface electrodes was between 0 and 80% and declined to below 25% after taping. A remaining brand (27G DSN2260 Medtronic) revealed impedances over 100 kΩ and FR = 100% under not taped and taped conditions. Conclusion: Subcutaneous needle and surface electrodes yield highly coherent EMGs and TES-MEP signals. When taped and allowing sufficient settling time, adhesive surface-electrode signals may approach the signal quality of subcutaneous needle electrodes but still depend on unpredictable conditions of the skin. The study provides a new valuable practical guidance for selection of extramuscular EMG electrodes. This study on horses shares common principles for the choice of adhesive surface or sc needle electrodes in human applications such as in intraoperative neurophysiological monitoring of motor functions of the brain and spinal cord

    Trapezius Motor Evoked Potentials From Transcranial Electrical Stimulation and Transcranial Magnetic Stimulation:Reference Data, Characteristic Differences and Intradural Motor Velocities in Horses

    Get PDF
    Reason for Performing Study: So far, only transcranial motor evoked potentials (MEP) of the extensor carpi radialis and tibialis cranialis have been documented for diagnostic evaluation in horses. These allow for differentiating whether lesions are located in either the thoraco-lumbar region or in the cervical myelum and/or brain. Transcranial trapezius MEPs further enable to distinguish between spinal and supraspinal located lesions. No normative data are available. It is unclear whether transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) are interchangeable modalities. Objectives: To provide normative data for trapezius MEP parameters in horses for TES and TMS and to discern direct and indirect conduction routes by neurophysiological models that use anatomical geometric characteristics to relate latency times with peripheral (PCV) and central conduction velocities (CCV). Methods: Transcranial electrical stimulation-induced trapezius MEPs were obtained from twelve horses. TES and TMS-MEPs (subgroup 5 horses) were compared intra-individually. Trapezius MEPs were measured bilaterally twice at 5 intensity steps. Motoneurons were localized using nerve conduction models of the cervical and spinal accessory nerves (SAN). Predicted CCVs were verified by multifidus MEP data from two horses referred for neurophysiological assessment. Results: Mean MEP latencies revealed for TES: 13.5 (11.1–16.0)ms and TMS: 19.7 (12–29.5)ms, comprising ∌100% direct routes and for TMS mixed direct/indirect routes of L:23/50; R:14/50. Left/right latency decreases over 10 > 50 V for TES were: –1.4/–1.8 ms and over 10 > 50% for TMS: –1.7/–3.5 ms. Direct route TMS-TES latency differences were 1.88–4.30 ms. 95% MEP amplitudes ranges for TES were: L:0.26–22 mV; R:0.5–15 mV and TMS: L:0.9 – 9.1 mV; R:1.1–7.9 mV. Conclusion: This is the first study to report normative data characterizing TES and TMS induced- trapezius MEPs in horses. The complex trapezius innervation leaves TES as the only reliable stimulation modality. Differences in latency times along the SAN route permit for estimation of the location of active motoneurons, which is of importance for clinical diagnostic purpose. SAN route lengths and latency times are governed by anatomical locations of motoneurons across C2-C5 segments. TES intensity-dependent reductions of trapezius MEP latencies are similar to limb muscles while MEP amplitudes between sides and between TES and TMS are not different. CCVs may reach 180 m/s

    Evaluation of the diagnostic value of transcranial electrical stimulation (TES) to assess neuronal functional integrity in horses

    Get PDF
    Medical imaging allows for the visualization of spinal cord compression sites; however, it is impossible to assess the impact of visible stenotic sites on neuronal functioning, which is crucial information to formulate a correct prognosis and install targeted therapy. It is hypothesized that with the transcranial electrical stimulation (TES) technique, neurological impairment can be reliably diagnosed. Objective: To evaluate the ability of the TES technique to assess neuronal functional integrity in ataxic horses by recording TES-induced muscular evoked potentials (MEPs) in three different muscles and to structurally involve multiple ancillary diagnostic techniques, such as clinical neurological examination, plain radiography (RX) with ratio assessment, contrast myelography, and post-mortem gross and histopathological examination. Methods: Nine ataxic horses, showing combined fore and hindlimb ataxia (grades 2–4), were involved, together with 12 healthy horses. TES-induced MEPs were recorded bilaterally at the level of the trapezius (TR), the extensor carpi radialis (ECR), and tibialis cranialis (TC) muscles. Two Board-certified radiologists evaluated intra- and inter-sagittal diameter ratios on RX, reductions of dorsal contrast columns, and dural diameters (range skull-T1). Post-mortem gross pathological and segmental histopathological examination was also performed by a Board-certified pathologist. Results: TES-MEP latencies were significantly prolonged in both ECR and TC in all ataxic horses as opposed to the healthy horses. The TR showed a mixed pattern of normal and prolonged latency times. TES-MEP amplitudes were the least discriminative between healthy and ataxic horses. Youden’s cutoff latencies for ataxic horses were 24.6 ms for the ECR and 45.5 ms for the TC (sensitivity and specificity of 100%). For healthy horses, maximum latency values were 22 and 37 ms, respectively. RX revealed spinal cord compression in 8 out of 9 involved ataxic horses with positive predictive values of 0–100%. All ataxic horses showed multi-segmental Wallerian degeneration. All pathological changes recorded in the white matter of the spinal cord were widely dispersed across all cervical segments, whereas gray matter damage was more localized at the specific segmental level. Conclusion: TES-MEP latencies are highly sensitive to detect impairment of spinal cord motor functions for mild-to-severe ataxia (grades 2–4)

    Effectiveness of Passive and Active Surveillance for Early Detection of SARS-CoV-2 in Mink during the 2020 Outbreak in the Netherlands

    Get PDF
    Starting December 2019, a novel coronavirus (SARS-CoV-2) spread among humans across the world. From 2020 onward, farmed mink were found susceptible to the virus. In this paper, we describe the Dutch surveillance system and the added surveillance components for early detection of SARS-CoV-2 outbreaks and their results in Dutch mink farms. In the Netherlands, a surveillance system was in place in which mink farmers could submit carcasses for postmortem evaluation and could contact a telephone helpdesk for veterinary advise. Through this system, the first SARS-CoV-2 outbreak in two mink farms was detected in April 2020. Immediately, the Dutch Ministry of Agriculture commissioned a consortium of statutory and research institutes to intensify the surveillance system. The program consisted of both passive surveillance, i.e., mandatory notifications and active surveillance components, i.e., serological screenings and weekly risk-based sampling of dead mink for early detection of new SARS-CoV-2 infections. When one of the surveillance components indicated a suspicion of a possible SARS-CoV-2 infection, follow-up samplings were conducted and at confirmation, all mink were culled. During 2020, 67 out of 124 mink farms that were under surveillance became infected with SARS-CoV-2 (54%). Of these, 31 were detected based on clinical signs (passive surveillance of clinical signs) and 36 were detected through active surveillance. From the mink farms with a new SARS-CoV-2 outbreak that was detected through the surveillance, in 19% of the farms (n = 7), the mink never showed any clinical signs of SARS-CoV-2 and might have been missed by the passive notification system. This study underlines the added value of a surveillance system that can quickly be intensified. The subsequent combination of both passive and active surveillance has shown to be effective in the early detection of emerging pathogens, which is important to minimize the risk of zoonotic spill-over

    DNA mismatch repair gene MSH6 implicated in determining age at natural menopause

    Get PDF
    notes: PMCID: PMC3976329This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are known to contribute to ∌50% of the variation in both age at menarche and menopause, but to date the known genes explain <15% of the genetic component. We have used genome-wide association in a bivariate meta-analysis of both traits to identify genes involved in determining reproductive lifespan. We observed significant genetic correlation between the two traits using genome-wide complex trait analysis. However, we found no robust statistical evidence for individual variants with an effect on both traits. A novel association with age at menopause was detected for a variant rs1800932 in the mismatch repair gene MSH6 (P = 1.9 × 10(-9)), which was also associated with altered expression levels of MSH6 mRNA in multiple tissues. This study contributes to the growing evidence that DNA repair processes play a key role in ovarian ageing and could be an important therapeutic target for infertility.UK Medical Research CouncilWellcome Trus

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Explaining discontinuity in organizational learning: A process analysis

    No full text
    This paper offers a process analysis of organizational learning as it unfolds in a social and temporal context. Building upon the 4I framework (Crossan et al.1999), we examine organizational learning processes in a longitudinal case study of an implementation of knowledge management in an international bank. This learning trajectory shows complex multilevel learning dynamics, in which we identify discontinuities where micro-processes of organizational learning are interrupted or do not progress from level to level. These discontinuities are explained by dynamics and tensions in the social and temporal structures enacted in the learning processes. Time is thereby revealed as a key dimension in the process and politics of organizational learning. The discontinuities in the micro-processes of learning render organizational learning fragmented and transient

    Contrasting dynamics of organizational learning : a process theory perspective

    No full text
    In this paper we analyze the process characteristics of organizational learning. A wide variety of process models of organizational learning have been proposed in the literature, but these models have not been systematically investigated. In this paper we use Van de Ven and Poole's (1995) taxonomy of process types to compare the extant conceptualizations of organizational learning. We show that the four types of process models - life cycle, evolution, teleology and dialectics - can also be found among prominent models of learning. In order to analyze the relationships between these different types of learning processes, we present observations from two field studies. These observations illustrate the existence of multiple processes, their coexistence and their complementarity in producing learning outcomes. But the observations also show that the coexistence of multiple process types can lead to tensions and conflicts that have to be dealt with by organization members. We conclude that the competing, complementary and conflicting relationships between process types underscores the importance of a process theory perspective on organizational learning and the necessity to study process models simultaneously and interactively

    Explaining discontinuity in organizational learning : a process analysis

    No full text
    This paper offers a process analysis of organizational learning as it unfolds in a social and temporal context. Building upon the 4I framework (Crossan et al. 1999), we examine organizational learning processes in a longitudinal case study of an implementation of knowledge management in an international bank. This learning trajectory shows complex multilevel learning dynamics, in which we identify discontinuities where micro-processes of organizational learning are interrupted or do not progress from level to level. These discontinuities are explained by dynamics and tensions in the social and temporal structures enacted in the learning processes. Time is thereby revealed as a key dimension in the process and politics of organizational learning. The discontinuities in the micro-processes of learning render organizational learning fragmented and transient
    corecore