19 research outputs found

    The Strange Star Surface: A Crust with Nuggets

    Full text link
    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient ( 1026~10^{26} g/cm4^4) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure

    Assessing Tracheostomy as a Risk Factor for Hearing Loss in Neonates with Bronchopulmonary Dysplasia

    Get PDF
    Objectives: This study compares the risk of hearing loss in children with bronchopulmonary dysplasia (BPD) based upon whether the child required tracheostomy. Method: A retrospective chart review was conducted that included all children diagnosed with BPD from 2013–2020 at a single tertiary medical institution. Primary outcome was presence of hearing loss. Children without follow-up audiogram were excluded from analysis. Risk comparison was made using hazard analysis; Cox regression model controlled for exposure to ototoxic medications. Results: There were 177 infants diagnosed with BPD who had sufficient follow-up for inclusion. Thirty-two children (18%) underwent tracheostomy placement. Children with tracheostomy were at significantly higher risk of developing hearing loss, with 13/32 (41%) demonstrating hearing loss during follow-up, compared with 16/145 (11%) of children without tracheostomy, p value \u3c 0.001. Cox regression model found that children with tracheostomy were 5.9 times more likely to develop later onset hearing loss than children without tracheostomy, p value 0.011. Most patients diagnosed with hearing loss were shown to have mild conductive hearing loss. Conclusion: Among children with BPD, those who required tracheostomy were at significantly higher risk of developing hearing loss, including later onset hearing loss. In this study, the hearing loss observed was typically mild and conductive in nature. Families of children with tracheostomy should be counseled regarding this risk and recommendations for otologic and hearing surveillance

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept

    Get PDF
    © 2023by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure.Peer reviewe

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil

    No full text
    The application of environmental DNA (eDNA) metabarcoding as a biomonitoring tool has greatly increased, but studies have focused on temperate aquatic macro-organisms. We apply eDNA metabarcoding to detecting the mammalian community in two high-biodiversity regions of Brazil: the Amazon and Atlantic Forests. We identified Critically Endangered and Endangered mammalian species and found overlap with species identified via camera trapping. We highlight the potential for using eDNA monitoring for mammals in biodiverse regions and identify challenges: we need a better understanding of the ecology of eDNA within variable environments and more appropriate reference sequences for species identification in these anthropogenically impacted biomes. © 2020 The Mammal Society and John Wiley & Sons Lt
    corecore