11 research outputs found

    Multi-Method Chronometric Constraints on the Thermal, Structural and Morphotectonic Evolution of the Eastern and Western Sierras Pampeanas with Special Emphasis on K-Ar Dating of Fault Gouges

    Get PDF
    Die hier präsentierte Studie umfasst detaillierte Untersuchungen zur thermochronologischen, strukturellen sowie morphologischen Entwicklung der Östlichen und Westlichen Sierras Pampeanas in Argentinien, zwischen 26°S to 34°S südlicher Breite. Kapitel 3 diskutiert thermochronologische Daten (Apatit Spaltspuren, Zirkon und Apatit (U-Th)/He) sowie K-Ar Illit-Datierung an Störungsletten aus der Sierra de Comechingones sowie Ar-Ar Alter an Vulkaniten des vulkanischen Gürtels von San Luis (Östliche Sierras Pampeanas). K-Ar Illitalter belegen den Beginn spröder Deformation vor etwa 340 Ma. Thermochronologische Daten dokumentieren geringe Exhumationsraten seit dem späten Paläozoikum sowie eine maximale Exhumierung von etwa 2,3 km seit der späten Kreidezeit. Ar-Ar Datierungen an vulkanischen Gesteinen des San Luis Vulkanischen Gürtels ergeben Alter zwischen 7,54 Ma und 1,91 Ma. Dies belegt ein ostwärts gerichtetes Fortschreiten der magmatischen Front, welches mit einer Verflachung des Subduktionswinkels der Nazca Platte unter die Südamerikanische Platte vor etwa 11.2 Ma assoziiert wird. Darüber hinaus deuten die hier präsentierten thermochronologischen Daten an, dass der Anteil Andiner Exhumation und Hebung an der Gesamthebung und Exhumation der Sierras Pampeanas von geringer ist als gemeinhin angenommen. Kapitel 4 präsentiert Ergebnisse von Niedrig-Temperatur thermochronologischen Untersuchungen sowie K-Ar Alter retrograd gewachsener Illite aus spröden Störungszonen der Sierra de San Luis (Östliche Sierras Pampeanas). K-Ar Illitalter belegen eine lang andauernde Aktivität spröder Deformation welche unmittelbar nach dem Ende der Chanic Phase der Famatinischen Orogenese vor etwa 320 Ma einsetzte und zeitlich mit dem Übergang von duktilen zu spröden Deformationsmechanismen übereinstimmt. Jüngste Illitlater liegen zwischen 222-172 Ma. Diese können als Abkühlalter des Grundgebirges unter die zur Illitbildung benötigten Temperaturen interpretiert werden, jedoch nicht als Ende der spröden Deformation. Diese Interpretation wird von den Ergebnissen thermochronologischer Untersuchungen bestätigt. (U-Th)/He Datierungen an Apatiten und Zirkonen, sowie Apatit Spaltspuranalysen dokumentieren die Exhumation seit dem Perm, welche möglicherweise in Verbindung zur San Rafael Orogenese steht. Die ermittelten Abkühlalter belegen geringe Exhumationsraten sowie die damit einhergehende lange Verweildauer der Proben in den Temperaturbereichen der partial annealing bzw. parial retention zone von Apatit und Zirkon (PRZA, PRZZ und PAZA). Die finale Abkühlung auf Oberflächentemperaturen fand im Verlauf des Jura und der späten Kreide statt. Die Abkühlgeschichten der Sierra de San Luis und Sierra de Comechingones werden in einem Entwicklungsmodel zusammengefasst, welches signifikante Unterschiede in der thermischen Entwicklung beider Gebirgszüge offenbart. Kapitel 5 diskutiert die thermochronologische Entwicklung der Sierra de Pie de Palo, einem ausgeprägten Höhenzug in den Westlichen Sierras Pampeanas. Thermochronologische Untersuchungen zeigen das die strukturelle Entwicklung der Sierra Pie de Palo bereits im späten Paläozoikum einsetzte und von jeher durch tektonisch kontrollierte Erosion geprägt wurde, welche sich im Verlauf des Mesozoikums aufgrund extensionaler Tektonik zwar verlangsamte, jedoch andauerte. Die heutige Topographie des Gebirgszuges bildete sich im Zuge Andiner Kompression im Verlauf des Späten Mesozoikums und Paläogens durch die Hebung und damit einhergehender Denudation einzelner Grundgebirgsblöcke. Die mit der Hebung assoziierte Deformation schritt dabei von Ost nach West voran. Der Gesamtbetrag vertikaler Hebung seit dem frühen Paläozoikum kann auf ca. 3,7-4,3 km eingegrenzt werden, wobei die Gesamtexhumation etwa 1,7-2,2 km bei einer Exhumationsrate von 0,03-0,04 mm/a beträgt. Kapitel 6 stellt eine Methode zur Interpretation von K-Ar Illit Feinfraktionsaltern aus Störungsletten aus nichtsedimentären Gesteinen vor. Gemäß der vorgestellten Methode werden die ermittelten K Ar Illitalter in Kombination mit den Untersuchungsergebnissen unabhängiger Parameter, z.B. Illitkristallinität, Illit-Polytypie und Polytyp-Quantifizierung, Korngröße, Tonmineralogie, K-Ar Abkühlaltern des Nebengesteins sowie mit Ergebnissen thermochronologischer Untersuchungen (AHe, ZHe, AFT) evaluiert. Dieser Interpretationsansatz wird im Rahmen einer regionalen Studie innerhalb der Östlichen Sierras Pampeanas exemplarisch angewandt. Im Zuge dessen wurde eine große Zahl von Störungsletten systematisch beprobt und analysiert. Ermittelte K-Ar Illitalter decken die Zeitspanne vom Devon bis in die Kreidezeit und dokumentieren eine lang anhaltende Phase bruchhafter Deformation in der Region. Alter >320 Ma sind synchron mit einer Periode kompressiver intra-Platten Tektonik, während Permische und Triassische Alter mit einer Periode flacher Subduktion der Farallon Platte unter die Südamerikansche Platte assoziiert werden können. Darüber hinaus belegen die K-Ar Illitalter ein von Nord nach Süd Fortschreiten der spröden Deformation in den Sierras de San Luis und Comechingones. Die Integrität und Konsistenz der analysierten Daten belegt die Leistungsfähigkeit und tektonische Signifikanz der hier vorgestellten Methode, welche somit einen bedeutenden Beitrag zur Entschlüsselung komplexer Abkühlungs- und Deformationsereignisse bieten kann. Jedoch kann gezeigt werden, dass die Aussagekraft der hier vorgestellten Methode stark von der Abkühlgeschichte des Untersuchungsgebietes abhängt. Kapitel 7 präsentiert thermochronologische Daten aus den gesamten Sierras Pampeanas. Darüber hinaus werden alle verfügbaren thermochronologischen und geochronologischen Daten zur Abkühlgeschichte der Sierras Pampeanas diskutiert und in ein Abkühlmodell zusammengefasst. Die Daten belegen eine Abkühlung unter 200°C im Verlauf des Karbons. Im Verlauf des Perms und der Trias schritt die Abkühlung von West nach Ost fort, räumlich und zeitlich einhergehend mit dem fortschreiten eines flachen Subduktionsereignisses der Farallon-Platte unter die heutige Südamerikanische Platte. Mesozoische Riftereignisse und damit einhergehende Sedimentation und Versenkung zeigen nur lokal Einfluss auf die ermittelten Abkühlalter. Dies deutet darauf hin, dass die zum Verlust der Altersinformation der thermochronologischen Systeme notwenige Versenkungstiefen nur entlang der schmalen, räumlich eingeschränkten Kretazischen Riftbecken erreicht werden. Die finale Abkühlung auf Oberflächentemperaturen verlief diachron in den nördlichen und südlichen Sierras Pampeanas. So können im Norden Neogene Alter beobachtet werden, während die südlichen und westlichen Sierras Pampeanas spätestens seit der Kreide bzw. frühen Paleogens auf Oberflächentemperaturen abgekühlt waren. Letzteres deutet auf die Existenz einer positiven Topographie in den südlichen Sierras Pampeanas, bereits vor dem Einsetzen Cenozoischen Andinen Kompression und der im Neogenen einsetzenden flachen Subduktion der Nazca-Platte hin. Dies wiederum wiederspricht der allgemein akzeptierten Hypothese, dass die Exhumation und Hebung der Sierras Pampeanas allein mit der Neogenen flachen Subduktion der Nazca-Platte in Verbindung stehen. Im Gegensatz dazu wird vorgeschlagen, dass diese Neogenen Prozesse lediglich zu einer Überprägung und Akzentuierung des bereits existierenden Reliefs führten. Diese Vermutung kann durch die Berechnung auffallend niedriger Denudationsraten in den Östlichen und Westlichen Sierras Pampeanas von 0,010 0,024 km/a gestützt werden, welche auf stabile Bedingungen, zumindest seit der späten Kreidezeit, hindeuten

    GPS-gestützte Kartierung gravitativer Massenverlagerungen an der Röt/ Muschelkalk-Grenze im Göttinger Wald

    Get PDF
    Gravitative Massenverlagerungen entlang der Muschelkalkschichtstufe gehören zur natürlichen Morphodynamik. Durch die unterschiedliche Erosionsresistenz der relativ inkompetenten Ton- und Mergelsteine des Röt und der direkt darüber anstehenden widerstandsfähigeren Kalkgesteinen des Unteren Muschelkalks hat sich ein Steilhang im Übergang dieser Einheiten ausgeprägt. Ein unruhiges Relief des Schichtstufenhangs zeugt an vielen Stellen von gravitativen Massenverlagerungen. Zur detaillierten Kartierung dieser gravitativen Massenverlagerungen am Hünstollen im Göttinger Wald (10km nordöstlich von Göttingen) wurden Zweifrequenz-GPS-Messungen durchgeführt. Mittels differentieller Korrektur der gesammelten GPS-Daten konnte eine horizontale Präzision der Positionsbestimmung von bis zu 10 cm auf freier Fläche und bis zu 40 cm im Wald erreicht werden. Zusammen mit Schichtflächenmessungen ermöglichen die gesammelten Daten eine hochauflösende Darstellung einzelner Strukturelemente, Rückschlüsse auf die stattgefundenen Bewegungsabläufe sowie eine relative zeitliche Zuordnung der einzelnen Rutschkörper...conferenc

    Jurassic to Lower Cretaceous tectonostratigraphy of the German Central Graben, southern North Sea

    Get PDF
    The Central Graben is a Mesozoic sedimentary basin that is significantly influenced by rift and salt tectonics. Its southern part is located in the German and Dutch sectors of the North Sea. Even though studies exist on the tectonic and stratigraphic development of the Danish and Dutch Central Graben, the German Central Graben as an important link is less investigated. We aim to fill this gap and to investigate the sedimentary development from the Latest Triassic to the Early Cretaceous, the relative influence of salt and rift tectonics on subsidence and how our results fit into the existing studies of the Danish and Dutch Central Graben. Knowledge of the development of the graben and its sedimentation is critical for any possible economic use like hydrocarbon exploitation or carbon capture and storage. Therefore, we mapped nine laterally traceable horizons on 2D and 3D reflection seismic data from the Lower Jurassic to the Lower Cretaceous within the German Central Graben and adjacent Danish Salt Dome Province as well as the northern Dutch Central Graben. These horizons include the base horizons of four tectonostratigraphic mega-sequences of the southern Central Graben adopted from the current Dutch tectonostratigraphic concept. Based on the mapping results, we constructed subsidence, thickness and erosion maps of the tectonostratigraphic mega-sequences and their subdivisions. The tectonostratigraphic mega-sequences were then correlated with well logs to determine the lithology. The results show that the structural and stratigraphic architecture of the German Central Graben was consecutively dominated by either subsidence controlled by rifting, salt tectonics or by thermal uplift and subsidence. We suggest that the German Central Graben is divided by a large strike-slip fault zone, the Mid Central Graben Transverse Zone, into a northern part that geologically rather belongs to the Danish and a southern part that rather belongs to the Dutch Central Graben. We discuss how this division and the tectonics influenced the regional lithology

    Exhumation and uplift of the Sierras Pampeanas: preliminary implications from K–Ar fault gouge dating and low-T thermochronology in the Sierra de Comechingones (Argentina)

    Get PDF
    The Sierras Pampeanas in central and north-western Argentina constitute a distinct morphotectonic feature between 27°S and 33°S. The last stage of uplift and deformation in this area are interpreted to be closely related to the Andean flat-slab subduction of the Nazca plate beneath the South American plate. K–Ar fault gouge dating and low-temperature thermochronology along two transects within the Sierra de Comechingones reveal a minimum age for the onset of brittle deformation about 340 Ma, very low exhumation rates since Late Paleozoic time, as well as a total exhumation of about 2.3 km since the Late Cretaceous. New Ar–Ar ages (7.54–1.91 Ma) of volcanic rocks from the San Luis volcanic belt support the eastward propagation of the flat-slab magmatic front, confirming the onset of flat-slab related deformation in this region at 11.2 Ma. Although low-temperature thermochronology does not clearly constrain the signal of the Andean uplift, it is understood that the current structural relief related to the Comechingones range has been achieved after the exhumation of both fault walls (circa 80–70 Ma)

    Exhumation history and landscape evolution of the Sierra de San Luis (Sierras Pampeanas, Argentina) - new insights from low - temperature thermochronological data

    Get PDF
    This paper presents low-temperature thermochronological data and K‑Ar fault gouge ages from the Sierra de San Luis in the Eastern Sierras Pampeanas in order to constrain its low-temperature thermal evolution and exhumation history. Thermal modelling based on (U-Th)/He dating of apatite and zircon and apatite fission track dating point to the Middle Permian and the Triassic/Early Jurassic as main cooling/exhumation phases, equivalent to ca. 40-50% of the total exhumation recorded by the applied methods. Cooling rates are generally low to moderate, varying between 2-10 °C/Ma during the Permian and Triassic periods and 0.5-1.5 °C/Ma in post-Triassic times. Slow cooling and, thus, persistent residence of samples in partial retention/partial annealing temperature conditions strongly influenced obtained ages. Thermochronological data indicate no significant exhumation after Cretaceous times, suggesting that sampled rocks were already at or near surface by the Cretaceous or even before. As consequence, Cenozoic cooling rates are low, generally between 0.2-0.5 °C/Ma which is, depending on geothermal gradient used for calculation, equivalent to a total Cenozoic exhumation of 0.6-1.8 km. K-Ar fault gouge data reveal long-term brittle fault activity. Fault gouge ages constrain the end of ductile and onset of brittle deformation in the Sierra de San Luis to the Late Carboniferous/Early Permian. Youngest K-Ar illite ages of 222-172 Ma are interpreted to represent the last illite formation event, although fault activity is recorded up to the Holocene

    Formation of the Figge Maar Seafloor Crater During the 1964 B1 Blowout in the German North Sea

    Get PDF
    In 1964, exploration drilling in the German Sector of the North Sea hit a gas pocket at ∼2900 m depth below the seafloor and triggered a blowout, which formed a 550 m-wide and up to 38 m deep seafloor crater now known as Figge Maar. Although seafloor craters formed by fluid flow are very common structures, little is known about their formation dynamics. Here, we present 2D reflection seismic, sediment echosounder, and multibeam echosounder data from three geoscientific surveys of the Figge Maar blowout crater, which are used to reconstruct its formation. Reflection seismic data support a scenario in which overpressured gas ascended first through the lower part of the borehole and then migrated along steeply inclined strata and faults towards the seafloor. The focused discharge of gas at the seafloor removed up to 4.8 Mt of sediments in the following weeks of vigorous venting. Eyewitness accounts document that the initial phase of crater formation was characterized by the eruptive expulsion of fluids and sediments cutting deep into the substrate. This was followed by a prolonged phase of sediment fluidization and redistribution widening the crater. After fluid discharge ceased, the Figge Maar acted as a sediment trap reducing the crater depth to ∼12 m relative to the surrounding seafloor in 2018, which corresponds to an average sedimentation rate of ∼22,000 m 3 /yr between 1995 and 2018. Hydroacoustic and geochemical data indicate that the Figge Maar nowadays emits primarily biogenic methane, predominantly during low tide. The formation of Figge Maar illustrates hazards related to the formation of secondary fluid pathways, which can bypass safety measures at the wellhead and are thus difficult to control
    corecore