23 research outputs found

    MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes

    Get PDF
    International audienceAntidepressants (ADs) are the most common treatment for major depressive disorder (MDD). However, only ∼30% of patients experience adequate response after a single AD trial, and this variability remains poorly understood. Here, we investigated microRNAs (miRNAs) as biomarkers of AD response using small RNA-sequencing in paired samples from MDD patients enrolled in a large, randomized placebo-controlled trial of duloxetine collected before and 8 weeks after treatment. Our results revealed differential expression of miR-146a-5p, miR-146b-5p, miR-425-3p and miR-24-3p according to treatment response. These results were replicated in two independent clinical trials of MDD, a well-characterized animal model of depression, and post-mortem human brains. Furthermore, using a combination of bioinformatics, mRNA studies and functional in vitro experiments, we showed significant dysregulation of genes involved in MAPK/Wnt signalling pathways. Together, our results indicate that these miRNAs are consistent markers of treatment response and regulators of the MAPK/Wnt systems

    Role of Tet1 and 5-hydroxymethylcytosine in cocaine action.

    No full text
    Ten-eleven translocation (TET) enzymes mediate the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is enriched in brain, and its ultimate DNA demethylation. However, the influence of TET and 5hmC on gene transcription in brain remains elusive. We found that ten-eleven translocation protein 1 (TET1) was downregulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration, which enhanced behavioral responses to cocaine. We then identified 5hmC induction in putative enhancers and coding regions of genes that have pivotal roles in drug addiction. Such induction of 5hmC, which occurred similarly following TET1 knockdown alone, correlated with increased expression of these genes as well as with their alternative splicing in response to cocaine administration. In addition, 5hmC alterations at certain loci persisted for at least 1 month after cocaine exposure. Together, these reveal a previously unknown epigenetic mechanism of cocaine action and provide new insight into how 5hmC regulates transcription in brain in vivo

    Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression

    No full text
    Depression is a common disorder that affects women at twice the rate of men. Here we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans, and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene, LINC00473, as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression
    corecore