209 research outputs found

    Regional Ventilation Is the Main Determinant of Alveolar Deposition of Coarse Particles in the Supine Healthy Human Lung during Tidal Breathing

    Get PDF
    Background: To quantify the relationship between regional lung ventilation and coarse aerosol deposition in the supine healthy human lung, we used oxygen-enhanced magnetic resonance imaging and planar gamma scintigraphy in seven subjects. Methods: Regional ventilation was measured in the supine posture in a 15 mm sagittal slice of the right lung. Deposition was measured by using planar gamma scintigraphy (coronal scans, 40 cm FOV) immediately postdeposition, 1 hour 30 minutes and 22 hours after deposition of 99mTc-labeled particles (4.9 ÎŒm MMAD, GSD 2.5), inhaled in the supine posture (flow 0.5 L/s, 15 breaths/min). The distribution of retained particles at different times was used to infer deposition in different airway regions, with 22 hours representing alveolar deposition. The fraction of total slice ventilation per quartile of lung height from the lung apex to the dome of the diaphragm at functional residual capacity was computed, and co-registered with deposition data - apices aligned - using a transmission scan as reference. The ratio of fractional alveolar deposition to fractional ventilation of each quartile (r) was used to evaluate ventilation and deposition matching (r > 1, regional aerosol deposition fraction larger than regional ventilation fraction). Results: r was not significantly different from 1 for all regions (1.04 ± 0.25, 1.08 ± 0.22, 1.03 ± 0.17, 0.92 ± 0.13, apex to diaphragm, p > 0.40) at the alveolar level (r22h). For retention times r0h and r1h30, only the diaphragmatic region at r1h30 differed significantly from 1. Conclusions: These results support the hypothesis that alveolar deposition is directly proportional to ventilation for ∌5 ÎŒm particles that are inhaled in the supine posture and are consistent with previous simulation predictions that show that convective flow is the main determinant of aerosol transport to the lung periphery

    Quantum phase gate with a selective interaction

    Get PDF
    We present a proposal for implementing quantum phase gates using selective interactions. We analize selectivity and the possibility to implement these gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio

    Entanglement and localization of wavefunctions

    Full text link
    We review recent works that relate entanglement of random vectors to their localization properties. In particular, the linear entropy is related by a simple expression to the inverse participation ratio, while next orders of the entropy of entanglement contain information about e.g. the multifractal exponents. Numerical simulations show that these results can account for the entanglement present in wavefunctions of physical systems.Comment: 6 pages, 4 figures, to appear in the proceedings of the NATO Advanced Research Workshop 'Recent Advances in Nonlinear Dynamics and Complex System Physics', Tashkent, Uzbekistan, 200

    Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in non-resistance trained males and elite rugby playing position

    Get PDF
    Background FTO gene variants have been associated with obesity phenotypes in sedentary and obese populations, but rarely with skeletal muscle and elite athlete phenotypes. Methods In 1089 participants, comprising 530 elite rugby athletes and 559 non-athletes, DNA was collected and genotyped for the FTO rs9939609 variant using real-time PCR. In a subgroup of non-resistance trained individuals (NT; n = 120), we also assessed structural and functional skeletal muscle phenotypes using dual energy x-ray absorptiometry, ultrasound and isokinetic dynamometry. In a subgroup of rugby athletes (n = 77), we assessed muscle power during a countermovement jump. Results In NT, TT genotype and T allele carriers had greater total body (4.8% and 4.1%) and total appendicular lean mass (LM; 3.0% and 2.1%) compared to AA genotype, with greater arm LM (0.8%) in T allele carriers and leg LM (2.1%) for TT, compared to AA genotype. Furthermore, the T allele was more common (94%) in selected elite rugby union athletes (back three and centre players) who are most reliant on LM rather than total body mass for success, compared to other rugby athletes (82%; P = 0.01, OR = 3.34) and controls (84%; P = 0.03, OR = 2.88). Accordingly, these athletes had greater peak power relative to body mass than other rugby athletes (14%; P = 2 x 10-6). Conclusion Collectively, these results suggest that the T allele is associated with increased LM and elite athletic success. This has implications for athletic populations, as well as conditions characterised by low LM such as sarcopenia and cachexia

    Composite grading algorithm for the National Cancer Institute’s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)

    Get PDF
    Background: The Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events is an item library designed for eliciting patient-reported adverse events in oncology. For each adverse event, up to three individual items are scored for frequency, severity, and interference with daily activities. To align the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events with other standardized tools for adverse event assessment including the Common Terminology Criteria for Adverse Events, an algorithm for mapping individual items for any given adverse event to a single composite numerical grade was developed and tested. Methods: A five-step process was used: (1) All 179 possible Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events score combinations were presented to 20 clinical investigators to subjectively map combinations to single numerical grades ranging from 0 to 3. (2) Combinations with <75% agreement were presented to investigator committees at a National Clinical Trials Network cooperative group meeting to gain majority consensus via anonymous voting. (3) The resulting algorithm was refined via graphical and tabular approaches to assure directional consistency. (4) Validity, reliability, and sensitivity were assessed in a national study dataset. (5) Accuracy for delineating adverse events between study arms was measured in two Phase III clinical trials (NCT02066181 and NCT01522443). Results: In Step 1, 12/179 score combinations had <75% initial agreement. In Step 2, majority consensus was reached for all combinations. In Step 3, five grades were adjusted to assure directional consistency. In Steps 4 and 5, composite grades performed well and comparably to individual item scores on validity, reliability, sensitivity, and between-arm delineation. Conclusion: A composite grading algorithm has been developed and yields single numerical grades for adverse events assessed via the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events, and can be useful in analyses and reporting

    Variability in ecosystem service measurement: A pollination service case study

    Get PDF
    Research quantifying ecosystem services (ES) - collectively, the benefits that society obtains from ecosystems - is rapidly increasing. Despite the seemingly straightforward definition, a wide variety of methods are used to measure ES. This methodological variability has largely been ignored, and standard protocols to select measures that capture ES provision have yet to be established. Furthermore, most published papers do not include explicit definitions of individual ES. We surveyed the literature on pollination ES to assess the range of measurement approaches, focusing on three essential steps: (1) definition of the ES, (2) identification of components contributing to ES delivery, and (3) selection of metrics to represent these components. We found considerable variation in how pollination as an ES - a relatively well-defined service - is measured. We discuss potential causes of this variability and provide suggestions to address this issue. Consistency in ES measurement, or a clear explanation of selected definitions and metrics, is critical to facilitate comparisons among studies and inform ecosystem management

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the Îł\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure

    Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    Full text link
    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, MinM_{in}, above the GUT scale, MGUTM_{GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to MinM_{in}, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic (m1/2,m0)(m_{1/2}, m_0) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to MinM_{in}, as we illustrate for several cases with tan(beta)=10 and 55. However, these features do not necessarily disappear at large MinM_{in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos, version to appear in EPJ

    Wobbling Mass Influence on Impact Ground Reaction Forces: A Simulation Model Sensitivity Analysis

    Get PDF
    This article was published in the serial, Journal of Applied Biomechanics [© Human Kinetics]. The definitive version is available at: http://journals.humankinetics.com/JABTo gain insight into joint loadings during impacts, wobbling mass models have been used. The aim of this study was to investigate the sensitivity of a wobbling mass model, of landing from a drop, to the model's parameters. A two-dimensional wobbling mass model was developed. Three rigid linked segments designed to represent the skeleton each had a second mass attached to them, via two translational non-linear spring dampers, representing the soft tissue. Model parameters were systematically varied one at a time and the effect this had on the peak vertical ground reaction force and segment kinematics was examined. Model output showed low sensitivity to most model parameters but was sensitive to the timing of joint torque initiation. Varying the heel pad stiffness in the range of stiffness values reported in the literature had the largest influence on the peak vertical ground reaction force. The analysis indicated that the more proximal body segments had a lower influence on peak vertical ground reaction force per unit mass than the segments nearer the contact point, 340 N/kg, 157 N/kg and 24 N/kg for the shank, thigh and trunk respectively. Model simulations were relatively insensitive to variations in the properties of the connection between the wobbling masses and the skeleton. Given the proviso that estimates for the other model parameters and joint torque activation timings lie in a realistic range, then if the goal is to examine the effects of the wobbling mass on the system this insensitivity is an advantage. If precise knowledge about the motion of the wobbling mass is of interest, however, more experimental work is required to determine precisely these model parameters

    Chronic Stress, Sense of Belonging, and Depression Among Survivors of Traumatic Brain Injury

    Full text link
    To test whether chronic stress, interpersonal relatedness, and cognitive burden could explain depression after traumatic brain injury (TBI). Design : A nonprobability sample of 75 mild-to-moderately injured TBI survivors and their significant others, were recruited from five TBI day-rehabilitation programs. All participants were within 2 years of the date of injury and were living in the community. Methods : During face-to-face interviews, demographic information, and estimates of brain injury severity were obtained and participants completed a cognitive battery of tests of directed attention and short-term memory, responses to the Perceived Stress Scale, Interpersonal Relatedness Inventory, Sense of Belonging Instrument, Neurobehavioral Functioning Inventory, and Center for Epidemiological Studies Depression Scale;. Findings : Chronic stress was significantly and positively related to post-TBI depression. Depression and postinjury sense of belonging were negatively related. Social support and results from the cognitive battery did not explain depression. Conclusions : Postinjury chronic stress and sense of belonging were strong predictors of post-injury depression and are variables amenable to interventions by nurses in community health, neurological centers, or rehabilitation clinics. Future studies are needed to examine how these variables change over time during the recovery process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72593/1/j.1547-5069.2002.00221.x.pd
    • 

    corecore