574 research outputs found
Noise quenching in lasers and masers by strong coherent pumping
An intense single-mode correlated-spontaneous-emission laser or maser can be realized by driving the active atoms coherently with an injected external field. The scheme involves single-photon transitions unlike the two-photon or quantum-beat correlated-emission lasers that utilize correlations between successive photon-cascade emissions or between simultaneous emissions into modes of the field. Quenching of both the amplitude and phase noise and, in certain cases, squeezing of the amplitude fluctuations are found
Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases
Crossing minimization is one of the central problems in graph drawing.
Recently, there has been an increased interest in the problem of minimizing
crossings between paths in drawings of graphs. This is the metro-line crossing
minimization problem (MLCM): Given an embedded graph and a set L of simple
paths, called lines, order the lines on each edge so that the total number of
crossings is minimized. So far, the complexity of MLCM has been an open
problem. In contrast, the problem variant in which line ends must be placed in
outermost position on their edges (MLCM-P) is known to be NP-hard. Our main
results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We
give an -approximation algorithm for MLCM-P
Від редакційної колегії
No abstract
Shifting new media: from content to consultancy, from heterarchy to hierarchy
This is a detailed case history of one of London’s iconic new media companies, AMX Studios. Some of the changes in this firm, we assume, are not untypical for other firms in this sector. Particularly we want to draw attention to two transformations. The first change in AMX and in London’s new media industry more generally refers to the field of industrial relations. What can be observed is a shift from a rather heterarchical towards a more hierarchical organized new media industry, a shift from short-term project networks to long-term client dependency. The second change refers to new media products and services. We want to argue for a shift from cool content production towards consultancy and interactive communications solutions
Ultrafast time-resolved spectroscopy of 1D metal-dielectric photonic crystals
We study the all-optical switching behavior of one-dimensional
metal-dielectric photonic crystals due to the nonlinearity of the free metal
electrons. A polychromatic pump-probe setup is used to determine the wavelength
and pump intensity dependence of the ultrafast transmission suppression as well
as the dynamics of the process on a subpicosecond timescale. We find ultrafast
(sub-picosecond) as well as a slow (millisecond) behavior. We present a model
of the ultrafast dynamics and nonlinear response which can fit the measured
data well and allows us to separate the thermal and the electronic response of
the system.Comment: 7 pages, 5 figure
Successful Heart-Liver Transplant Using Dual-organ Normothermic Perfusion in a Patient With Fontan Failure
Advances in surgical technique and multidisciplinary management have improved long-term survival for patients born with single ventricle physiology. However, patients who have undergone Fontan completion remain at risk for long-term comorbidities associated with the complex hemodynamic changes following the procedure, including Fontan failure and Fontan-associated liver disease.1 Combined heart-liver transplantation (CHLT) is a rare but lifesaving procedure that has been described in the setting of heart and liver failure secondary to Fontan failure.2 As long-term survival continues to improve for Fontan patients, the incidence of Fontan-associated liver disease will increase. Thus, improving CHLT outcomes and access to both organs is a strong priority.
Here, we describe a successful CHLT for a patient with chronic ventricular dysfunction and Fontan-associated liver disease. The key innovation in this case was the use of normothermic machine perfusion (NMP) to preserve both the heart and liver grafts. This approach extended the preservation time for the liver while also mitigating the risk of ischemic injury and reducing the time pressure constraints on the heart transplant team. Notably, this stands in contrast to traditional static cold storage (SCS), where metabolic activity is reduced through hypothermia, but the extended cold ischemic time can lead to increased vulnerability to reperfusion injury
Efficacy and Safety Results After \u3e35 Years of Treatment With the Bruton’s Tyrosine Kinase Inhibitor Evobrutinib in Relapsing Multiple Sclerosis: Long-Term Follow-Up of a Phase II Randomised Clinical Trial With a Cerebrospinal Fluid Sub-Study
BACKGROUND: Evobrutinib - an oral, central nervous system (CNS)-penetrant, and highly selective Bruton\u27s tyrosine kinase inhibitor - has shown efficacy in a 48-week, double-blind, Phase II trial in patients with relapsing MS.
OBJECTIVE: Report results of the Phase II open-label extension (OLE; up to week 192 from randomisation) and a cerebrospinal fluid (CSF) sub-study.
METHODS: In the 48-week double-blind period (DBP), patients received evobrutinib 25 mg once-daily, 75 mg once-daily, 75 mg twice-daily or placebo (switched to evobrutinib 25 mg once-daily after week 24). Patients could then enter the OLE, receiving evobrutinib 75 mg once-daily (mean (± standard deviation (SD)) duration = 50.6 weeks (±6.0)) before switching to 75 mg twice-daily.
RESULTS: Of 164 evobrutinib-treated patients who entered the OLE, 128 (78.0%) completed ⩾192 weeks of treatment. Patients receiving DBP evobrutinib 75 mg twice-daily: annualised relapse rate at week 48 (0.11 (95% confidence interval (CI) = 0.04-0.25)) was maintained with the OLE twice-daily dose up to week 192 (0.11 (0.05-0.22)); Expanded Disability Status Scale score remained stable; serum neurofilament light chain fell to levels like a non-MS population (
CONCLUSION: Long-term evobrutinib treatment was well tolerated and associated with a sustained low level of disease activity. Evobrutinib was present in CSF at concentrations similar to plasma
Recommended from our members
FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions
The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data
Discovery of catalases in members of the Chlamydiales order.
Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment
- …