161 research outputs found
Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
Bursty transport phenomena associated with convective motion present
universal statistical characteristics among different physical systems. In this
letter, a stochastic univariate model and the associated probability
distribution function for the description of bursty transport in plasma
turbulence is presented. The proposed stochastic process recovers the universal
distribution of density fluctuations observed in plasma edge of several
magnetic confinement devices and the remarkable scaling between their skewness
and kurtosis . Similar statistical characteristics of variabilities have
been also observed in other physical systems that are characterized by
convection such as the X-ray fluctuations emitted by the Cygnus X-1 accretion
disc plasmas and the sea surface temperature fluctuations.Comment: 10 pages, 5 figure
Nusselt number scaling in tokamak plasma turbulence
K. Takeda et al., Physics of Plasmas 12, 052309 (2005) https://doi.org/10.1063/1.189516
Control of Transport-barrier relaxations by Resonant Magnetic Perturbations
Transport-barrier relaxation oscillations in the presence of resonant
magnetic perturbations are investigated using three-dimensional global fluid
turbulence simulations from first principles at the edge of a tokamak. It is
shown that resonant magnetic perturbations have a stabilizing effect on these
relaxation oscillations and that this effect is due mainly to a modification of
the pressure profile linked to the presence of both residual residual magnetic
island chains and a stochastic layer.Comment: 4 page
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Spontaneous transport barrier generation at the edge of a magnetically
confined plasma is investigated. To this end, a model of electrostatic
turbulence in three-dimensional geometry is extended to account for the impact
of friction between trapped and passing particles on the radial electric field.
Non-linear flux-driven simulations are carried out, and it is shown that
considering the radial and temporal variations of the neoclassical friction
coefficients allows for a transport barrier to be generated above a threshold
of the input power
Collisional effects in the tokamap
AbstractPlasmas confined in tokamaks with non-symmetric perturbations are surrounded by a chaotic layer of magnetic field lines that guide charged particles to the tokamak wall. We use an analytical two-dimensional symplectic mapping to study the resulting fractal patterns of field line escape. However, particles may experience several collisions before escaping toward the tokamaks wall. We add a random collisional term to the field line mapping to investigate how the particle collisions modify their escape patterns
Linear study of the precessional fishbone instability
The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics (MHD) equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particles energy while it is decreased by continuum damping
Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island
We present numerical simulation studies of 2D reduced MHD equations
investigating the impact of the electronic \beta parameter and of curvature
effects on the nonlinear evolution of drift tearing islands. We observe a
bifurcation phenomenon that leads to an amplification of the pressure energy,
the generation of E \times B poloidal flow and a nonlinear diamagnetic drift
that affects the rotation of the magnetic island. These dynamical modifications
arise due to quasilinear effects that generate a zonal flow at the onset point
of the bifurcation. Our simulations show that the transition point is
influenced by the \beta parameter such that the pressure gradient through a
curvature effect strongly stabilizes the transition. Regarding the modified
rotation of the island, a model for the frequency is derived in order to study
its origin and the effect of the \beta parameter. It appears that after the
transition, an E \times B poloidal flow as well as a nonlinear diamagnetic
drift are generated due to an amplification of the stresses by pressure
effects
- …