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Abstract. We present numerical simulation studies of 2D reduced MHD equations

investigating the impact of the electronic β parameter and of curvature effects on the

nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon

that leads to an amplification of the pressure energy, the generation of E ×B poloidal

flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island.

These dynamical modifications arise due to quasi linear effects that generate a zonal

flow at the onset point of the bifurcation. Our simulations show that the transition

point is influenced by the β parameter such that the pressure gradient through a cur-

vature effect strongly stabilizes the transition. Regarding the modified rotation of the

island, a model for the frequency is derived in order to study its origin and the effect

of the β parameter. It appears that after the transition, an E×B poloidal flow as well

as a nonlinear diamagnetic drift are generated due to an amplification of the stresses

by pressure effects.
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1. Introduction

In tokamak and space plasmas, confinement can be affected by instabilities and

in particular, at resonant surfaces, magnetohydrodynamics activity can lead to the

generation of magnetic islands reaching a macroscopic width. Solar flares [1], energy

release events in the geotail [2] or tokamak internal disruptions, also known as sawtooth

oscillations, are linked to such reconnection phenomena. Diamagnetic effects and self-

generated zonal flows can modify the saturated island width via bifurcation mechanisms

[3]. The rotation frequency of the island can also be nonlinearly affected with a strong

dependence on the transport coefficients and on the competition between the Reynolds

and Maxwell stresses [4]. This can have a significant physical consequence, for example

in a tokamak, where such a nonlinear effect on the rotation can lead to a slowing down

of the plasma through locking to the resistive wall producing in turn a degradation

of the plasma and/or triggering a transport barrier [5]. Likewise curvature effects can

also modify the nature of island dynamics. Magnetic islands can in particular coexist

with pressure driven intabilities such as interchange modes and/or turbulence. Several

experiments report the coexistence of turbulence and MHD activities showing some

correlated effects [6, 7]. Numerical studies of the interaction between double tearing

modes and micro-turbulence to delineate the interaction between zonal flows and the

latter in the growing phase of the double tearing instability have also been performed

in [8]. More recently, in [9] an investigation of the interaction of a 2D electrostatic

turbulence with an island whose dynamics is governed by a generalized Rutherford

equation has been carried out. However the study neglects the potentially stabilizing

influence of the magnetic structure on the turbulence precluding thereby any multi-

scale interaction between MHD and turbulence. In this paper we study the dynamics

of a magnetic islands in the presence of interchange effects but limit ourselves to the

situation where the interchange modes in the system are linearly stable. We find that

the whole system does not generate turbulence in the nonlinear stage but exhibits a

complex dynamics arising mainly due to quasilinear effects. Our investigations are

based on linear and nonlinear simulations of a set of reduced fluid equations (a three

field model) through which we examine the origin and the influence of zonal flows on

the magnetic island dynamics in the presence of interchange effects. The magnitude of

the pressure gradient appears to be a key parameter of the dynamics controlling both,

the generation of the zonal flow and the development of a nonlinear transition in the

system.

The paper is organized as follows. In section II, the model equations are introduced.

In section III, a linear analysis of the model is done in order to understand the role

of the equilibrium magnetic field in the stabilization of the electromagnetic interchange

modes. In section IV, the description and the analysis of the dynamics are done. In

section V, the origin of the island poloidal rotation is investigated. Section VI presents

a summary and conclusions of the paper.



3

2. Model system

Our model system is a three fields model corresponding to a reduced magnetohydrody-

namic description of the fluid equations [10] and which provides a minimal framework

for including both the interchange and the tearing mode phenomena in a plasma. The

model consists of a set of three coupled equations for the electrostatic potential φ, the

pressure of the electron p and the magnetic flux ψ. We suppose that the magnetic field

is dominated by a constant component B0z along the z-direction. The time evolution of

the three fields are described by:

∂t∇
2
⊥
φ+

[

φ,∇2
⊥
φ
]

=
[

ψ,∇2
⊥
ψ
]

− κ1∂yp+ ν∇4
⊥
φ, (1)

∂tp+ [φ, p] = − v⋆

(

(1− κ2)∂yφ+ κ2∂yp
)

+ C2
[

ψ,∇2
⊥
ψ
]

+ χ⊥∇
2
⊥
p, (2)

∂tψ + [φ− p, ψ] = − v⋆∂yψ + η∇2
⊥
ψ, (3)

where v⋆ = βL⊥

2ΩiτALp
. The sum of the electron and ion momentum evolution equations

leads to the plasma equation of motion, Eq. (1), where ν is the viscosity. Eq. (2) comes

from the energy conservation equation where χ⊥ is the diffusivity. Eq. (3) is Ohm’s

law (electron parallel momentum equation) with η being the resistivity. β = p0
B2

0z/2µ0
is

the ratio of the electron thermal energy to the magnetic energy (p0 being the amplitude

of the equilibrium pressure), Lp is the pressure gradient length, L⊥ is a magnetic shear

length, R0 is the major plasma radius, Ωi =
eB0z

mi
is the ion cyclotron frequency, and τa

is the Alfvèn time. Equations (1-3) are normalized as follow:

t

τA
→ t,

x

L⊥

→ x, (4)

ψ

L⊥B0z
→ ψ,

φ

L⊥vAB0z
→ φ,

Lp
L⊥p0

p→ p, (5)

where vA = B0z/µ0nmi = L⊥/τa is the characteristic Alfvèn speed. κi parameters are

linked to the curvature and to the pressure gradient (κ1 = 2ΩiτA
L⊥

R0

and κ2 = 10Lp

3R0

),

so these parameters control the interchange instability. On the other hand, in Eq. (2),

the tearing mode dynamics is controlled by the coupling parameter C2 = 5β
6Ω2

i τ
2

A

. More

precisely, this parameter controls the coupling between pressure and the magnetic flux.

The nature of the linear and nonlinear dynamics of the magnetic island depends strongly

on the strength of the coupling. For a high β plasma, since the coupling is strong, the

pressure and the magnetic flux control the island dynamics, whereas for a low β plasma,

the island dynamics is governed by the interaction between the flow and the magnetic

flux. In our model we assume the electron temperature to be constant and the ions to

be cold. The cold ion limit is physically realistic since the ion temperature does not

significantly affect the stability of the tearing mode. As a further simplification we have

also neglected the parallel ion dynamics in the energy balance equation Eq. (2). Eqs. (1–

3) are solved numerically using a finite difference scheme in the x direction, including an

Arakawa algorithm [11] for an accurate conservation of the Poisson brackets [., .] and a

pseudo-spectral method in the y direction, including an appropriate de-aliasing scheme.
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β v⋆ C2

0.001 2 ∗ 10−3 3.3 ∗ 10−3

0.005 10−2 1.67 ∗ 10−2

0.015 3 ∗ 10−2 5 ∗ 10−2

0.025 5 ∗ 10−2 8.33 ∗ 10−2

Table 1. Effect of the β parameter on v⋆ and C.

3. Nature of the tearing modes and the influence of the curvature

parameter κ1

We now study the influence of the interchange mechanism on the magnetic reconnection

when the gradient scale length of the pressure, Lp, is of the order of the size of the island:

we set Lp = L⊥. We are interested in large islands, i.e islands with widths w such that

a & w ≫ ρs where a is the minor radius and ρs is the hybrid Larmor radius (ρs = cs/Ωi,

where cs is the ion sound velocity), and we have chosen L⊥ = 0.24m. The numerical

values of other parameters are taken to be R0 = 2.24m and ΩiτA=0.5. These numerical

values are typical of the TORE SUPRA device for an island width of about 1/3 the

minor radius and lead to κ1 ∼ 0.11 and κ2 ∼ 0.36. The widths of the numerical

integration box are set to Lx = 2πL⊥ and Ly = 5πL⊥. The values of the coefficients

C(β) and ω⋆(β) = kyv⋆ are determined for four different values of β in the range of 10−3

to 2.5 × 10−2 (see Table (1)). Transport coefficients (ν, η, χ) are all set to 10−4 which

correspond to renormalized coefficients to include effects of microscopic turbulence [12] .

The equilibrium magnetic field B0y = B0ŷ, based on the Harris current sheet model [13],

is chosen to be of the form,

B0(x) = tanh

(

x− Lx/2

at

)

. (6)

The parameter at = 0.75 controls the width of the profile, ψ′

0(x) = B0(x). With such a

profile, the parameter ∆′ (the tearing mode stability index) can be explicitly computed

taking into account the boundary conditions, for modes evolving slowly on the Alfvén

time scale and further neglecting the viscous and interchange corrections. Introducing

k̂ = atky, we have

at∆
′ = 2

(

1/k̂ − k̂
)

+ ∆̂b.c , (7)

where

2∆̂−1

b.c
= −

∫ Lx/(2at)

0

dy exp(2k̂y)/(1 + tanh(y)/k̂)2 (8)

is a correction linked to the finite radial distance of the walls.

Let us investigate the stability of the modes modeled by eqs. (1–3) with the given

numerical values of the parameters in the presence of such an equilibrium. Figure (1),
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Figure 1. Linear growth rate γ [τ−1

A ] versus poloidal mode number ky for a simulation

with β = 10−3. [Left] v⋆ = 2.10−3, C = 3.33.10−3, κ1 = 0.1071, κ2 = 0.3571

and µ = χ⊥ = η = 10−4. [Right] v⋆ = 10−2, C = 2.10−3, κ1 = 5, κ2 = 0.3571,

µ = χ⊥ = 10−5 and η = 10−4.

shows the growth rate of the electromagnetic interchange and the tearing branches, as

functions of the poloidal wave number, for the parameter values given above. The left

graph has been obtained using the parameters chosen in this work with β = 0.001.

Tearing instability has the largest growth rate at ktear

y = 2π/LY = 0.4, for which

∆′ = 7 and γtear ∼ 0.0042. This is clearly smaller than the one we would obtain

in the classical tearing limit , i.e if we would have set all the parameters to zero

except η (γtear class = 0.0072). It is instructive to note also that in this parametric

regime the interchange branch is stable for any wave number. From an electrostatic

point of view, with such parameters, interchange would have been unstable for ky < 8

and would have given a scale separation between both instabilities (kint elec

y /ktear

y ∼ 7,

γ int elec/γtear ≪ 1). Let us focus on the tearing branch. Linearisation of eqs. (1–3) in the

vicinity of the resonnance shows that curvature effects weakly modify the growth rate

if κ1v⋆(ky/kx)
2/γ2 ≪ 1 and κ2 ≪ 1, which is true in our case. Considering the fact

that the linear regime is also not controlled by viscous phenomena [14], it follows that,

linearly, this system develops approximately drift tearing modes. The actual nature of

these modes is controlled mainly by the ratio P/Pcr and γ/ω⋆, where P = ν/η = 1 is

the Prandtl number and Pcr = (∆′(η/ky)
1/3)6/5. In our cases, for any β, the first ratio is

always smaller than 1. It implies that when γ/ω⋆ > 1, one gets the visco-tearing regime

with a growth rate scaling law γvt ∼ 0.47∆′η2/3P−1/6k
1/3
y . When γ/ω⋆ < 1, we recover

the visco-drift-tearing regime with the growth rate γvdt [15]. For instance, for β = 0.001

and ky = 0.4, we have γvt/ω⋆ ∼ 6.5 > 1 and γ = 0.00042 ∼ γvt = 0.00052. For ky = 1.2,

we have γvt/ω⋆ ∼ 0.2 < 1 and γ = 0.00035 ∼ γvdt = 0.0004.

The right graph of Figure (1) shows that there exist regimes where the interchange

branch is unstable and has the largest growth rate at small scales. The study of such

regimes is out of the scope of this paper. We also remark that the instability does not

necessarily develop in the vicinity of a resonant surface, but in that case, the effect of the

magnetic field on the stability of interchange like modes can be investigated by setting
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ψ′

0 = B0 = Cte and using some Fourier analysis. Figure (2) shows the linear growth rate

of interchange modes versus ψ′

0. As is well-known [16], the equilibrium magnetic field

stabilises the interchange modes and, in our case B0 = 1, this is clearly stable. We can

therefore expect that in the initial phase the growth of the magnetic island is weakly

influenced by interchange parameters.

4. Nonlinear generation of a strong zonal flow

4.1. Description of the nonlinear evolution of the system

To characterize how the pressure gradient affects the evolution of a magnetic island,

linear and nonlinear self consistent numerical simulations have been performed. A grid

number of nx = 128 is chosen for the radial direction and ny = 128 for the poloidal
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Figure 4. Snapshots of the fields ψ, φ and p before transition for β = 0.001, at

t = 5000τA.

direction (equivalent to 48 modes in this direction, including dealiasing). The energy

conservation relation derived from Eqs. (1–3) is

d

dt
(Em + Ep + Ek) = −η < j2 > −ν < ∆2φ > −

χ⊥

C2
< |∇p|2 > +S , (9)

where Em = 0.5 < |∇(ψ − ψ0)|
2>, Ep = 0.5 <p2>/C2 and Ek = 0.5 < |∇φ|2> are

respectively the magnetic energy, the pressure energy and the kinetic energy of the

fluctuations. The brackets < . > mean here an average over the simulation domain. S

is the source term linked to the curvature and the pressure gradient, proportional to

the radial pressure flux , S = −αS < p∂yφ > with αS = v⋆

C2 (1 − κ2) + κ1 > 0 because

κ2 < 1. Note that a local flattening of the pressure by radial exchange of pressure cells,

gives a fluctuation δS < 0. Moreover, the interchange source term S is not modified

by the generation of zonal flow. Figure (3) shows the time evolution of Em, Ep and

Ek for the parameters chosen in this work with β = 10−3 as well as the corresponding

ECT
m and ECT

k , for a classical tearing mode (i.e p = 0 and κi = 0). In comparison with

the evolution of a classical tearing mode, four regimes are observed in the nonlinear

simulations of a magnetic island in the presence of the interchange term. First, there

is a linear regime where the magnetic island is formed. Second, the system reaches

a quasi-plateau phase. Then, a transition occurs and as it will be shown later this

is linked to the interchange parameters. Finally, the system reaches a new saturated

state. During the first two phases, the evolution of the energies is not strongly affected

by the presence of the curvature terms. The evolution of the magnetic island follows

closely the time trajectory of an island driven by a tearing instability. However, at

t⋆ = 13200 τA, a transition occurs. Figures (4) and (5) show snapshots of the fields ψ, φ

and p respectively before and after the transition. The two dimensional profiles of the

pressure and the electrostatic potential (represented through isocontours) are strongly

affected by this transition. After this phase, the structure of the mode changes and a

flattening of the pressure is obtained.
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4.2. Origin of the transition

In order to understand the origin of the transition and to characterize the structure of

the electrostatic potential after the transition, we first assess the importance of small

scales. The spectra before the transition (a) and during the transition (b) are shown in

Figure (6). An equipartition between the energy of the magnetic flux and the energy of

the pressure is observed at large scales 0.8 < ky < 5 whereas there is an equipartition

between the energy of the pressure and the kinetic energy at small scales 8 > ky > 14.

We observe that these properties continue to persist when the transition occurs, the

energy level of the modes ky > 1.2 being roughly unaltered. We also note that as

apparent in Figure (6) only the large scales are affected at the transition. A detailed

analysis shows that the transition occurs when the kinetic energy of the mode ky = 0

becomes equal to the one of ky = 0.4 (mode 1). This suggests that the dynamics
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of modes 0, 1 and 2 along with the corresponding classical tearing case.

of the structure of the electrostatic potential is quasi-linear and that the transition

occurs when the mode ky = 0 becomes energetically dominant. To delineate the quasi-

linear nature of the magnetic island dynamics, we have performed a simulation with

only four poloidal modes and with the same parameters (β = 10−3). Figure (7) shows

the time evolution of the energies for this simulation. The comparison with Figure

(3) demontrates that one needs only four modes to describe the time evolution of the

energies. Therefore the dynamics of the system is the result of quasi linear effects.

Further, the time evolutions of the kinetic energies of modes 0, 1 and 2 are presented in

the right hand side panel of Figure (7) and compared with the evolution of modes in a

classical tearing run, i.e without pressure effects (p = 0 and κi = 0). In the latter case,

the growth is driven by the mode 1, the transition does not occur and the mode 0 is not

generated. Conversely, in the case where the pressure effects are included, the transition

occurs and the mode ky = 0, i.e zonal flow, is strongly generated. It is also the first to

be amplified exponentially, at the beginning of the transition. This suggests that the

transition is linked to a strong amplification of the zonal flow. Nevertheless, when we

perform the same run, suppressing artificially the mode 0, i.e the zonal flow, we find that

the transition still occurs, roughly at the same time, but with a weaker amplitude. This

suggests that althouh zonal flows play a predominant role they are not the sole factor

responsible for the destabilizing mechanism. Indeed we can show from the analysis of

the snapshots of φ, p and ψ given by Figure (8) that the mode 0 plays an important

role in the triggering mechanism of the transition phase. We can observe that during

the transition, the pressure cells are crossing the resonant surface at the current sheet in

both directions, producing at the end a modification of the mode structure. Clearly the

potential structure suggests that the crossing results from an advection by the flow. Let
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Figure 8. Snapshots of the fields ψ, φ and p for β = 0.001, at t = 15000τA.

us stress that during this phase, the classical tearing picture of an incoming flow from

the sheet into the island is no more valid. Between t = 15000τA and t = 17000τA, S(t)

decreases because the reorganisation of the cell is radially equivalent to an exchange

of pressure cells with the gradient of the pressure fluctuations being outward. From

an energetic point of view, see eq. (9), κ1 and κ2 have a negligible effect because the

dominant contribution in the interchange source term is linked to ω⋆/C
2. In Figure

(7), the results of a simulation with four modes and without the curvature terms are

presented (κ1 = κ2 = 0). We find that the transition does not occur. At least, it does

not occur at 2.5t⋆, showing that a more complex mechanism due to curvature terms

might be at play. We next investigate the origin of the zonal flow.

4.3. Origin of the strong increase of the zonal flow

We investigate the origin of the zonal flow that is generated whenever β 6= 0 by

considering separately the energy transfer from the tearing mode to the zonal flow

and from also the other modes, in particular, the small scales.

Following [8], the equation for the flow energy feeding the mode km = m2π/Ly can

be written as,

d

dt
Em = TRm + TMm + TCm + TLBm + TKIm (10)

where

TRm = −

∫

dxφm([φ, ω])m (Reynolds stress contribution),

TMm =

∫

dxφm([ψ, j])m (Maxwell stress contribution),

TCm = − κ1km

∫

dxφmpm (curvature term contribution),

TLBm =

∫

dxφm([ψ0, j])m (line bending term contribution),

TKIm =

∫

dxφm([ψ, j0])m (kink term contribution).



11

0 0.5 1 1.5 2 2.5 3

x 10
4

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−9

t/τ
A

 

 

TR
0

TM
0

TLB
0

TKI
0

Figure 9. β = 10−3: Time evolution of TR
0 , TM

0 , TLB
0 and TKI

0 .

Here φm = φ̂me
iky + φ̂−me

−iky, where φ̂m is the m Fourier component of φ.

In order to understand the origin of the generation of the zonal flow, it is useful to

project equation (10) on the mode m = 0:

d

dt
E0 = TR0 + TM0 + TLB0 + TKI0 (11)

The curvature term does not directly feed the zonal flow. In Figure (9), the time

evolutions of TR0 , TM0 , TLB0 and TKI0 for the simulation with β = 10−3 are presented.

The contributions of the line bending and the kink terms are very weak. However, at

the transition, there is a strong generation of the Reynolds stress and the Maxwell stress

contributions. To proceed further, it is useful to separate the contributions from zonal

flow (m = 0), the mode m = 1 and other modes for each of the transfer functions.

Let us introduce φ>1 =
∑

m>1 φm. We can define three contributions in each transfer

function. For instance, in the case of TRm , we have:

TRm = TR0m + TR1m + TR>1m (12)

where TR0m =
∫

dxφm([φ0, ω0])m, TR1m =
∫

dxφm([φ1, ω1])m, and TR>1m =
∫

dxφm([φ>1, ω>1])m. Clearly, by definition TR11 = 0 and TR0m = TM0m = 0. Let us

focus on the energy transfer to zonal flow, neglecting the weak contributions of the line

bending and the kink terms. Equation (11) then becomes:

d

dt
E0 = TR10 + TR>10 + TM10 + TM>10 (13)

Using the above prescription we have checked that the main contibution to the Reynolds

and Maxwell stresses comes from the mode m = 1 while the contributions of the small

scales are weak.

4.4. Effect of the β parameter on the nonlinear dynamics

The left panel of Figure (10) presents the transition time and the time where the

first quasi plateau saturation occurs for various values of β. We note that the time
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Figure 10. Effect of the β parameter and of κ2 on the transition : [Left] Time at the

beginning of the first quasi plateau phase and time at the beginning of the transion

versus β. [Right] Time evolution of the kinetic energy for simulations with β = 10−3

but with different values of κ2.

corresponding to the first quasi-plateau phase does not depend on the β parameter.

This is in agreement with the results of Figure (3) which shows the time evolution of the

energies for two cases namely the classical tearing case (β = 0) and the β = 10−3 case.

However the saturation time depends strongly on the β parameter. For a regime where

the pressure effects are strong, i.e for a high value of β, the transition occurs quickly

whereas, for low β regimes, the transition occurs later. Further, in the right panel of

Figure (10), the effect of the interchange parameter κ2 on the transition is shown for a

simulation with four modes and with β = 10−3. The transtion time depends clearly on

the κ2 parameter. It tends to stabilize the first plateau phase.

To summarize, the nonlinear transition results from quasilinear effects. Zonal flow

amplification at the transition is due to the energy transfer from the mode m = 1 to

the mode m = 0 through mainly the Maxwell stress. The curvature term κ2 linked to

the interchange effect does not directly feed the growth of the zonal flow. However, we

have shown that this term controls the transition time t⋆. The transition leads to an

effective radial exchange of pressure cells generating an outward mean pressure gradient

of fluctuations. The shape of the pressure structure after the transition implies that a

diamagnetic velocity ω̃⋆ has been nonlinearly generated, driving a rotation of the island.

This driving is of course in competition with the zonal flow. Let us in the next section

analyze quantitatively the island poloidal rotation.
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5. Study of the island poloidal rotation

5.1. Model for the island rotation frequency

Following [4] where a study of the rotation frequency of the island has been done for the

case of a drift-tearing mode, we investigate the origin of the magnetic island poloidal

rotation. Let us project the Ohm’s law (Eq.3) on the mode m = 1 assuming that for

the mode ky, ψ̃ky(x, y, t) = ψky(x)e
ikyye−iγt, where the real part of γ is the frequency

of the island rotation and the imaginary part is the linear growth rate of the island.

Neglecting the nonlinear contribution of the modes ky > k1, we obtain the expression

for the rotation frequency ω of the island

ω = ω⋆ + ω̃⋆ + ω̃E×B + Lψ0
+ Lη (14)

where

ω⋆ = k1v
⋆,

ω̃⋆ = − k1∂xp0,

ω̃E×B = k1∂xφ0,

Lψ0
= −Re

(

k1ψ
′

0

φk1 (x)− pk1 (x)

ψk1 (x)

)

,

Lη = Re

(

iη
(∂2x − k21)ψk1 (x)

ψk1 (x)

)

,

are respectivly the linear diamagnetic drift, the nonlinear diamagnetic drift, the

contribution of the equilibrium magnetic field and the contribution of the resistivity. In

general, each term of Eq.(14) is not a constant inside the current sheet δ, so we consider

their radial averages over the current sheet to contribute to the rotation frequency. Eq.

(14) becomes :

< ω >δ=< ω⋆ + ω̃⋆ >δ + < ω̃E×B >δ + < Lψ0
>δ + < Lη >δ (15)

where < . >δ means an average over the current sheet.

In Figure (11), the time evolution of the poloidal position is presented for a non-

linear simulation with β = 0.025. The dynamics of the energies for a simulation with

β = 0.025 has the same behaviour as the one obtained in Figure (3) with β = 10−3.

However, as shown in the left panel of Figure (10), with such a high value of β, the

transition occurs earlier around t = 5600τA. In Figure (11) a comparison with the is-

land position obtained from the model Eq.(15) is also shown. The derived model is in

agreement with the numerical data and the dynamics of the island rotation is recovered.

We would like to mention here that the time integration for these results has been per-

formed on a very long time scale compared with the Alfvén time.

Equation (15) shows that the effective island frequency is the result of different

contributions. In order to investigate the effect of the interchange terms on the island

rotation, Figure (12) presents the evolution of each frequency for a simulation with
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Figure 11. Time evolution of the poloidal position of the island : comparison between

the model and numerical data for β = 0.025.
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Figure 12. Time evolution of the frequencies for simulations with β = 0.025 : [Left]

Simulation setting κ1 = κ2 = 0. [Right] Simulation including the interchange terms.

β = 0.025 setting κ1 = κ2 = 0 (left panel) and for a simulation with β = 0.025

including the curvature/interchange terms (right panel). First, for the two simulations,

the contributions to the rotation of the equilibrium magnetic field Lψ0
and of the

resistivity Lη are weak. Moreover, Figure (12) shows that the frequency dynamics is

not affected by the curvature terms during the linear regime and during the first quasi

plateau phase. Actually, during the linear formation of the magnetic island, the rotation

is controlled mainly by the linear diamagnetic drift while ω̃⋆ and ω̃E×B are weak. During

the first quasi plateau phase, the nonlinear diamagnetic drift and the E × B poloidal

flow are strongly generated, and affect the island rotation. The E × B poloidal flow is
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the most important contribution to the frequency during this regime. However, after

the first quasi plateau phase, interchange terms affect the dynamics of the frequency.

When the interchange terms are switched off, the time evolution of the frequencies is in

agreement with previous results found for a drift tearing mode [4]. After the nonlinear

generation of the flows, linear and nonlinear diamagnetic drifts cancel each other. As a

result, the E×B poloidal flow controls the effective frequency of the island, ωt ∼ ω̃E×B.

The right panel of Figure (12) shows that when interchange terms are included, such

canceling of the total diamagnetic frequency does not occur anymore after the transition.

Hence the total diamagnetic drift then provides the main contribution to the island

rotation. However, after the transition, clearly ∂ωt/∂t ∼ ∂ωE×B/∂t. The asymptotic

island velocity is enhanced by the curvature terms κ1 and κ2.

5.2. Origin of the E ×B flow

Nonlinearly, the E ×B flow is generated and affects the rotation of the island. In order

to investigate its origin, the flow equation (Eq.1) is projected on the mode k1 for the

limiting case of ∇2
⊥
≈ ∂2x. We obtain :

∂t∂
2
xφ0 = −

1

Ly

∫

Ly

[φ,∇2
⊥
φ]dy +

1

Ly

∫

Ly

[ψ,∇2
⊥
ψ]dy +

µ

Ly

∫

Ly

∂4xφdy (16)

We have defined the E × B poloidal flow as ω̃E×B = k1∂xφ0. So multiplying Eq.

(16) by k1 and averaging over the current sheet δ, we obtain :

∂t < ω̃E×B >δ= R(t) +M(t) + V (t) (17)

where

R (t) = −
k1
δLy

∫

δ

∫

Ly

[φ,∇2
⊥
φ]dydx,

M (t) =
k1
δLy

∫

δ

∫

Ly

[ψ,∇2
⊥
ψ]dydx,

V (t) =
µk1
δLy

∫

δ

∫

Ly

∂4xφdydx

with R (t) being the Reynolds stress, M (t) being the Maxwell stress and V (t) being

the viscosity contribution to the E ×B flow.

On the left panel of the Figure (13), the time evolutions of R, M and V are presented

for a simulation with β = 0.025. As expected, the stresses are nonlinearly generated

at the beginning of the first quasi plateau phase allowing the growth of the E × B

poloidal flow. Except at the end of the linear regime where the Reynolds stress is not

yet generated, the viscosity term is very weak and does not play an important role in

the generation of the flow. The most important contributions come from the Reynolds

and Maxwell stresses which balance each other. There is a strong amplification of the

amplitude of the stresses during the transition. On the right panel of Figure (13), a

closeup of the temporal dynamics of R, M and V during the transition time evolutions are
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Figure 13. Time evolution of M, R and V for β = 0.025 : [Left] Evolution from

t = 0τA to t = 30000τA of the stresses over the current sheet. [Right] Zoom during the

transition of the stresses over the current sheet.

presented. Note that during this transition, whereas the viscosity term is still weak, the

evolutions of the Reynolds and Maxwell stresses are complementary. The two stresses

tend to balance each other during this phase where the flow is crossing the separatrices,

limiting the level of the generated zonal flow, even if they are both growing in amplitude.

Once the transition has occured the amplitude of the mean nonlinear brackets in the

vicinity of the separatrix, R and M , fall. However, in the new dynamical equilibrium

the resulting E ×B poloidal flow persists asymptotically and is driven by the Maxwell

stress, as a response of the magnetic structure to the new field distribution.

5.3. Origin of the nonlinear diamagnetic drift

In order to investigate the origin of the nonlinear diamagnetic drift, we follow the same

procedure for the pressure equation (Eq.2). After projection on the mode k1, we obtain:

∂t < ω̃⋆ >δ= dC(t) + dM(t) +D(t) (18)

where

dC(t) = −
k1
δLy

∫

δ

∫

Ly

∂x[φ, p]dydx,

dM(t) =
C2k1
δLy

∫

δ

∫

Ly

∂x[ψ,∇
2
⊥
ψ]dydx,

D(t) =
k1χ⊥

δLy

∫

δ

∫

Ly

∂3xpdydx.

dC is the contribution to the nonlinear diamagnetic drift of the divergence of the

convective term, dM is the contribution of the divergence of the Maxwell stress and D

is the contribution of the diffusivity.
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Figure 14. Time evolution of dC, dM and D for β = 0.025 : [Left] Evolution from

t = 0τA to t = 30000τA over the current sheet. [Right] Zoom during the tansition over

the current sheet.

On the left panel of Figure (14), the time evolutions of dC, dM and D are presented.

The three contributions to the nonlinear diamagnetic drift are generated at the beginning

of the nonlinear regime. During the first quasi plateau phase, dC, dM and D participate

actively in the generation and growth of the nonlinear diamagnetic drift ω̃⋆. At the

transition there is an amplification of the amplitude of the three contributions. The

right panel of Figure (14) presents a closeup of the time evolutions of dC, dM and D

during the transition. During this transition, the contribution of the diffusivity does not

grow and is relatively weak compared to dC and dM. Note that both the divergence of

the convective term and of the Maxwell stress feed the nonlinear diamagnetic drift. We

observe that in the first phase of the transition, the nonlinear diamagnetic drift is driven

by dC, the term linked to the advection of the pressure cells. In the following phase

this term is balanced by the Maxwell divergence stress leading to a stabilization of the

island dynamics. This shows the importance of the coupling parameter C during the

transition. In the saturation phase, the origin of ω̃⋆ comes mainly from the divergence

of the convective term, dM and D becoming relatively weak.

5.4. Effect of the β parameter on the island poloidal rotation

In Figure (15), the effect of the β parameter on the rotation frequency is presented.

The frequencies have been time averaged from t = 15000τA to t = 30000τA. At low β,

pressure effects are weak and the situation is close the classical tearing situation. The

competition between Reynolds and Maxwell stresses produces nonlinearly neither the

zonal flow nor a diamagnetic drift. The asymptotic rotation frequency ωt increases with

β. The nonlinear diamagnetic frequency increases almost linearly with β, but with a

slope lower than the linear one, allowing a global asymptotic drift of the island in the
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Figure 16. Effetc of β on the stresses after the transition: [Left] Reynolds and Maxwell

stresses versus β parameter. [Right] Divergence of the convection and divergence of

the Maxwell stress versus β.

electron diamagnetic direction. Let us note however that the direction of the island

rotation depends on the value of the viscosity parameter [4]. For any β, the zonal flow

contribution to the island drift is weaker than the diamagnetic one. Note also that from

β ∼ 0.015, ωE×B decreases, and this is linked to the transition observed in Figure (16)

where the effect of the β parameter on the average stresses is shown (from t = 15000τA
to t = 30000τA). The amplification of the stresses leads to the nonlinear generation

of the mean flows and hence affects considerably the rotation of the magnetic island.

More precisely, it appears that for low β values, the amplitudes of the stresses are very

weak as in the classical tearing case. This explains why nonlinear diamagnetic drift



19

and nonlinear E × B poloidal flow do not affect strongly the rotation of the island in

those cases. However, for high β regimes, the amplitude of the stresses, in particular

the Maxwell and convective contribution become more important. At β ∼ 0.015, a

transition is observed : first, dM ceases to be neglectable compared to dC, second the

Reynolds contribution R starts to grow, weakening the global E × B flow, as observed

in Figure (15).

6. Summary

The nonlinear dynamics of a magnetic island in the presence of pressure gradient effects

has been investigated. This nonlinear dynamics is different from the classical tearing case

and exhibits a bifurcation. After a linear growth of the island and a first quasi plateau

phase, a transition occurs and the system reaches a new saturated state characterized

by the flattening of the pressure profile. We have shown that the dynamics of the island

during this bifurcation is due to quasi linear effects. The strong generation of a zonal

flow, due to interchange terms, allows this transition to occur. We have shown that the

time at which the transition occurs decreases with β while it increases with the pressure

parameter κ2. Regarding the poloidal rotation of the magnetic island, a model including

quasilinear effects has been tested successfully. Before the transition, the rotation of

the island corresponds to the linear diamagnetic drift. Then, at the transition, the

rotation is strongly affected by the nonlinear generation of the diamagnetic drift and of

the E × B flow. We have shown that the asymptotic nonlinear diamagnetic drift is a

linear function of β but does not cancel the linear drift, as previously obtained when

curvature parameters are neglected. The diamagnetic effect appears to be the dominant

contribution to the island rotation. We have shown also that the β parameter affects the

magnetic rotation through an amplification of the stresses. We have provided a detailed

analysis of their impacts on the E × B and diamagnetic drifts for both, the transition

and the asymptotic regime. At high β, we find that a Reynolds stress is generated in

the vicinity of the island and weakens the influence of the asymptotic E × B flow on

the rotation.
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