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Plasmas confined in tokamaks with non-symmetric perturbations are surrounded by a chaotic layer
of magnetic field lines that guide charged particles to the tokamak wall. We use an analytical two-
dimensional symplectic mapping to study the resulting fractal patterns of field line escape. However,
particles may experience several collisions before escaping toward the tokamaks wall. We add a random
collisional term to the field line mapping to investigate how the particle collisions modify their escape
patterns.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

There has been a growing recognition that the nonlinear dy-
namics of magnetic field lines plays an important role in tokamak
plasmas [1]. One of the distinctive features of this nonlinearity is
the possibility of chaotic behavior of magnetic field lines [2]. Here,
chaos refers to the Lagrangian description of the field lines struc-
ture, which is time-independent [3]. Chaotic behavior of magnetic
field lines is found not only to be typical but also desirable, when
the problem of particle and heat deposition on the tokamak wall
is considered. The main purpose behind the creation of a chaotic
zone is to obtain a uniform – and therefore cold – distribution of
escaping field lines and particles [4–6]. Recent studies, however,
have shown that in many situations this is not the case [7,9,10].
Rather, the chaotic dynamics creates a non-uniform distribution
pattern as a consequence of the presence of chaotic sets in the
chaotic zone [11].

Geometrically, these sets form a fractal structure, since their
underlying structure is the homoclinic intersection of invariant
manifolds of fixed points embedded in the chaotic region [7,9,12].
The magnetic field lines in a toroidal confinement scheme like a
tokamak represent a Hamiltonian system, where the toroidal co-
ordinate plays the role of time, and the remaining coordinates
stand for the canonically conjugated variables [1]. The magnetic
line flow in the presence of “time”-dependent perturbations (nec-
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essary to bring about chaotic motion) has no fixed points. How-
ever, in the description we adopt in our Letter we investigate a
Poincaré map of the magnetic field line flow. Since this map is
“time”-independent by construction (its equations do not involve
explicitly the toroidal variable), the corresponding singular points
are fixed points, such that we can associate invariant manifolds
with them. Indeed, fractal structures have been observed in many
different situations, including tokamak experiments [10,13,14]. An
example of fractal distribution in toroidal plasmas is the magnetic
footprint, a set of points at which the escaping chaotic orbits hit
the tokamak wall. As a first approximation, charged particles fol-
low magnetic field lines, hence the escaping field lines form pref-
erential transport channels for charged plasma particles. Magnetic
footprints then create hot spots in the tokamak wall with high con-
centrations of energy.

Many studies concerning nonlinear dynamics in tokamaks as-
sume a collisionless plasma and that particles follow magnetic field
lines [1]. A natural question that arises, therefore, is how parti-
cle motion and, in particular, particle collisions affect these fractal
structures. To answer these questions we use a simple numerical
model for particle motion, where collisions can be regarded as a
noisy component in the magnetic field line equations.

In the late 90’s, Balescu and collaborators have proposed a field
line map (the tokamap) [15] that was not directly derived from
magnetic field equations, but constructed to represent the global
field line dynamics in a tokamak. It has been derived from a mod-
ified version of Wobig’s generating function for a stellarator sub-
jected to a localized perturbation [16]. The tokamap is designed
to meet some desirable properties, like having an “impenetrable”
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magnetic axis, and admitting a realistic winding number pro-
file, which in the model can be freely chosen. Furthermore, the
tokamap is suitable for describing tokamaks with ergodic limiters,
due to the existence of a chaotic field line region in the tokamak
plasma edge.

Recently, it has been shown that noise can enhance the trap-
ping of trajectories in scattering systems [17]. On the other hand,
uncorrelated random perturbations can cause the escape of origi-
nally trapped orbits [18–20]. In this Letter, we present numerical
evidence that the main effect of collisions is to disperse particles
about the unstable manifold of the chaotic saddle that governs the
magnetic field lines. We treat particle collisions as random pertur-
bations acting on the particle trajectories, which follow themselves
magnetic field lines. This idea dates back to the Monte Carlo codes
for collisional diffusion equations [21].

The Letter is organized as follows. In Section 2 we make a brief
description of the derivation of the magnetic field line mapping
and introduce an extended version of this map with collisional ef-
fects. In Section 3 we show the fractal manifold structures that
appear for the field lines dynamics, and discuss the time scale
where these structures are robust. The results and analysis of the
collisional tokamap are shown in Section 4. Our conclusions are
presented in Section 5.

2. Model

Tokamaks are the most promising devices for the magnetic con-
finement of fusion plasmas. The stability of the plasma confine-
ment in tokamaks is a problem in which the magnetic field line
configuration plays a fundamental role – both by strongly influ-
encing the transport that arises from fine scale turbulence and by
being the leading order approximation to the particle flux since
charged particles tend to follow the magnetic field lines. Magnetic
field lines can be regarded as orbits of Hamiltonian systems of one-
and-a-half degrees of freedom which are, provided the time-like
coordinate is periodic, equivalent to two-dimensional conservative
return maps [1,22]. Consequently we can employ two-dimensional
Hamiltonian maps to describe the toroidal magnetic configurations
of plasmas confined in tokamaks, a procedure which is particu-
larly tailored for interpreting phenomena in the nonlinear dynam-
ics framework.

Magnetic field lines in the tokamak can be written in the fol-
lowing Hamiltonian form

dψ

dϕ
= −∂ H

∂θ
,

dθ

dϕ
= ∂ H

∂ψ
, (1)

where the Hamiltonian H is the poloidal flux, θ and ψ repre-
sent the coordinate and momentum canonical variables, and the
toroidal angle ϕ is a time-like variable. The Hamiltonian H can be
divided into two parts: the unperturbed flux H0 and the perturbed
one H1, resulting in H = H0 + εH1 with

H0(ψ) =
∫

dψ

q(ψ)
, (2)

where q(ψ) is known as the safety profile.
The parameter ε represents the relative strength of the mag-

netic perturbations, that can be described in terms of a Fourier
series

H1(ψ, θ,ϕ) =
∑
m,n

Hm,n(ψ) cos(mθ − nϕ + χm,n), (3)

where m and n are the poloidal and toroidal mode numbers, and
χm,n represent their phases. The magnetic perturbation is a 2π -
periodic function of ϕ . Such periodicity allows for a simpler treat-
ment of the system via stroboscopic maps.
Fig. 1. Geometry and coordinates relevant for the tokamap. (a) Cylindrical coordi-
nates (R,ϕ), and Z are used to describe a field line point in the tokamak torus.
(b) Polar coordinates (ρ, θ) in a poloidal cross-section of the tokamak. (c) Two suc-
cessive map points in a poloidal cross-section at constant azimuthal angle ϕ with
ψ ∼ ρ2.

Thus, we introduce sections at ϕ = ϕk = (2π/s)k, with (k =
0,±1,±2) and s � 1. If we take (ψk, θk) as the coordinates of the
intersection points of the field lines with planes at ϕk = const. (see
Fig. 1), we can define a (forward) Poincaré map (ψk+1, θk+1) =
T(ψk, θk).

Such construction allows us to create the following discrete sys-
tem

ψk+1 = ψk − ∂ S(ψk+1, θk)

∂θk
= ψk − ε

ψk+1

1 + ψk+1
sin(θk), (4)

θk+1 = θk + 2π

q(ψk+1)
+ ∂ S(ψk+1, θk)

∂ψk+1

= ψk + 2πΩ(ψk+1) − ε
1

(1 + ψk+1)
2

cos(θk), (5)

which can be regarded as canonical transformations from variables
(ψk, θk) to (ψk+1, θk+1) with the following generating function of
the second kind

S(ψk+1, θk) = −ε
ψk+1

1 + ψk+1
cos(θk). (6)

The above map, proposed originally by Balescu et al. in [15], is
called the tokamap. Although the tokamap was not directly derived
from the magnetic field line equations, it meets some general and
desirable properties, namely: (i) the avoidance of negative values
of ψ , i.e. with ψ0 = 0 implying ψn � 0 for all n; (ii) it is related
to a realistic safety factor profile q(ψ) (in contrast, e.g. with the
Chirikov–Taylor standard map) [23].

In [24] it has been shown that from the Hamiltonian

H(ψ, θ,ϕ) =
∫

dψ

q(ψ)
+ ε

ψ

1 + ψ
cos(θ)

M∑
s=−M

cos(sϕ), (7)

with M → ∞, one can obtain the following map:

ψ̂k = ψk − ε

2

ψ̂k

ˆ sin(θk), (8a)

1 + ψk
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θ̂k = θk − ε

2

1

(1 + ψ̂k)
2

cos(θk),

θ̂k+1 = θ̂k + 2π

q(ψ̂k)
, (8b)

ψk+1 = ψ̂k − ε

2

ψ̂k

1 + ψ̂k

sin(θk+1), (8c)

θk+1 = θ̂k+1 − ε

2

1

(1 + ψ̂k)
2

cos(θk+1).

This map is called the symmetric tokamap and was already studied
in [25]. The only equation that can be solved explicitly is Eq. (8a)
with

ψ̂k = 1

2

[√
P 2(ψk, θk) + 4ψk − P (ψk, θk)

]
, (9)

where

P (ψ, θ) = 1 − ψ + ε

2
sin(θ). (10)

The other equations are numerically solved with the Newton
method.

The symmetric tokamap can be inverted by making ε → −ε
and Ω → −Ω , generating the backward tokamap. Here, we choose
to use the non-monotonic safety factor profile

q(ψ) = qm

1 − a(ψ − ψm)2
, (11)

where a = (1 − qm/q0)/ψ
2
m and ψm is a minimum of the safety

factor profile, given by

ψm =
(

1 +
√

1 − qm/q1

1 − qm/q0

)−1

, (12)

with q0 = q(0) = 3 and q1 = q(1) = 6. This mapping is the so-
called revtokamap [25].

Non-monotonic safety factor profiles in tokamaks can result
from noninductive current drive methods like neutral beam in-
jection [26]. The combination of Ohmic heating and current drive
generate configurations with enhanced magnetic reversed shear
and highly peaked density and pressure profiles. These discharges
present reduction of the plasma transport, through the formation
of a transport barrier, i.e., a region where both the electron and ion
diffusivities are greatly reduced around the shearless position [27].

As a first approximation, one can consider that charged parti-
cles follow magnetic field lines. This, however, might not be accu-
rate for situations where collisional effects become important. In
order to address these cases, we now introduce a collisional term
to the tokamap. In Refs. [28,29], a model for the heat transport in a
chaotic magnetic field region was proposed. In that model, chaotic
behavior is provided by the Chirikov–Taylor map dynamics, while
the heat flow is represented by adding a random displacement of
gyro-radius, ρ . Based on the same concept, collisional effects can
be included in the tokamap by adding, with a probability P , a dis-
placement ρ

(ψk+1, θk+1) = T f (ψk, θk) + M P (ρ), (13)

where

M P
ψ(ρ) = ρ sinφ, M P

θ (ρ) = ρ cosφ, (14)

with 0 < ρ � ρm . Here P is the collision probability from a given
distribution function and φ is the angle, where −π/2 < φ < π/2.

The inclusion of collisions in the tokamap leads to a strobo-
scopic map with an additional term that can be regarded as a
noisy component, representing the collisional effect on the field
Fig. 2. (Color online.) Poincaré section of the Revtokamap with ε = 6/2π .

lines. With this new term, the map becomes non-autonomous, that
is, the map fully depends on the snapshot (i.e. the corresponding
value of k) taken. Also, after this inclusion the map is no longer
symplectic.

3. Magnetic field line dynamics

We show in Fig. 2 the Poincaré section of field lines obtained by
iterating the forward tokamap with ε = 6/2π . The plot is shown
in the (ψ, θ)-plane. As pointed out in Ref. [25], the phase space
of Fig. 2 can be divided into two main regions: the laminar and
the chaotic zones. The chaotic zone is formed at the plasma edge,
while the laminar zone occupies the inner region of the Poincaré
plot. Field lines with initial positions inside the chaotic region can
reach the wall at ψ = 1 and, hence, escape the tokamak.

Because of the escaping field lines, the system can be viewed
as a chaotic scattering phenomenon [33]. Indeed, the dynamics
of magnetic field lines in tokamaks is frequently recognized as a
chaotic scattering process [25,30,7]. Chaotic scattering is due to the
presence of a non-attracting invariant set called the chaotic saddle,
which we denote by Σ . Take, for example, an unstable periodic
orbit inside the chaotic sea. The stable manifold, W S (Σ), of this
point is formed by the set of points that reach the periodic or-
bit asymptotically forward in time, while the unstable manifold,
W U (Σ), is a set of points that reach the periodic orbit backward
in time. The chaotic saddle is a nonattracting dynamical invariant
set formed by the homoclinic and heteroclinic intersections of the
stable and unstable manifolds of all the (infinite) unstable periodic
orbits embedded in the chaotic region [8]. These sets are invari-
ant in the sense that their points map each other and, therefore,
remain there forever.

Physically it is important to trace out the invariant manifolds
and their associated chaotic saddle. For instance, it is through the
unstable manifold that the magnetic field lines escape, forming
the so-called escape channels. The stable manifold, on the other
hand, highlights the initial position of field lines with longer con-
nection lengths. The connection length is the number of toroidal
turns it takes for a field line, originating from a given initial con-
dition, located at the Poincaré section, to reach the tokamak wall.
The connection length is thus a rough estimate of the escape time
for a particle in the chaotic region to hit the tokamak wall. Thus,
the chaotic saddle and its manifolds act as the dynamical skeleton
underlying the chaotic behavior of the system, and its topological
properties are similar to the Smale horseshoe [12].
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Fig. 3. Unstable (black filaments) and stable (gray filaments) manifolds of a fixed
point in the chaotic region of the Poincaré section of Fig. 2.

Fig. 3 shows a numerical approximation of the unstable (black
curves) and stable (gray curves) manifolds of a hyperbolic point
embedded in a chaotic region of the field line map obtained in the
previous section. The intersection of these sets form the chaotic
saddle. We can see from Fig. 3 that the manifolds are convoluted
sets, with filaments having a very intricate distribution. Geomet-
rically, these structures form a fractal set, and we computed their
box-counting dimension as D = 1.75 ± 0.04. We have also calcu-
lated the Lyapunov exponent along the unstable direction that re-
sulted in λ = 0.286±0.02. In the following, we explain the method
that was used to compute the invariant sets shown in Fig. 3, as
well as their dynamical properties.

There are different numerical techniques that can be used to
obtain the invariant sets. In this work, we choose to use the sprin-
kler method [31]. The sprinkler method consists on taking a fine
mesh (here we use 1000 × 1000 points) of initial positions in the
chaotic region of interest, and iterating them until the correspond-
ing orbits reach the tokamaks wall (at ψ = 1). The number of
iterations necessary for each trajectory to reach the wall is called
its escape time, denoted as tesc . The initial positions that yield larger
values of tesc trace out the stable manifold of the chaotic saddle. To
obtain the unstable manifold, we follow the same procedure using
the backward-iterated tokamap.

On using the same numerical results obtained from the sprin-
kler method, we can also plot the escape basin, shown in Fig. 4.
In the escape basin, each initial position is marked with a color
code indicating its escape time – for larger values of tesc , the cor-
responding pixel is lighter, while for fast escaping trajectories, the
pixel is darker. The initial conditions which generate orbits that
never escape, are represented by blank areas. From Fig. 4 we can
see that the boundaries between regions with different values of
the escape time trace out the stable manifold.

This is expected, since the intrinsic principle behind the sprin-
kler method is that long-lasting orbits of the map are located at
the vicinity of the stable manifold. The method requires that all n0
initial conditions we choose are uniformly distributed in a compact
set (i.e., a box C) that contains the chaotic saddle. After a time t ,
almost all of the n0 trajectories will have left C . In fact, if we con-
sider, as a first approximation, the system to be hyperbolic, the
decay rate of trajectories in C follows [32]

n(t) = n0 exp(t/τ ), (15)

where n(t) is the number of trajectories still in C at time t , and
1/τ is the decay constant (inverse of mean lifetime). Fig. 5(a)
Fig. 4. (Color online.) Escape time distribution for the Revtokamap without colli-
sions.

Fig. 5. (Color online.) (a) Number of map points in C with time and (b) width of
initial conditions lying along the stable manifold.

shows the fraction of trajectories that remain in C as a function
of time (here we consider C to be the region between the toka-
mak’s wall and the last barrier of periodic islands). It turns out
that the fraction of trajectories that remain in C actually follows
Eq. (15), with a mean lifetime of τ = 14.5 ± 1.0.

It is worth mentioning that Eq. (15) is strictly valid only for hy-
perbolic chaotic systems. In the Poincaré plot shown in Fig. 2, we
observe KAM tori separating the laminar from the chaotic zone.
These tori are a source of non-hyperbolic dynamics – close to it
there is stickiness of trajectories that leads to a power-law decay
of the number of orbits remaining in C , instead of the exponential
one [33]. Further from this boundary, however, the decay is expo-
nential, as shown in Fig. 5. Thus, the escape of chaotic magnetic
field lines in this case can still be described, in a good approxima-
tion, as a fully hyperbolic system.

It is important to remark that, for initial points close to the
chaotic saddle, only a few iterates are enough for field lines to
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Fig. 6. (a) Ensemble of particles that trace out the unstable manifold for the
tokamap with ρ = 10−3 and P = 1. (b) Detail of (a). (c) The same region of (b)
for the collisionless tokamap.

escape to the tokamak wall. After a finite time t , the nt trajectories
still inside C will have initial conditions lying in thin filaments
along the stable manifold. The widths of these filaments can be
estimated by [31]

ε = exp(−tλ), (16)

where λ is the Lyapunov exponent along the unstable direction.
For t → ∞, the filament width ε → 0 and the initial positions lie
in a Cantor-like structure, akin to that occurring in the invariant set
of the Smale horseshoe [12]. The time-scale of real systems, how-
ever, is finite. On regarding this limitation, we now discuss how
the above structures are affected when realistic plasma parameters
are considered.

There are cases, depending on the plasma temperature and
density, where the collision time is larger than the mean life-
time τ . In such situations, one can assume that the plasma par-
ticles follow field lines, and escape through the unstable manifold
of the hyperbolic points. This is true for the lower density plasma
condition. Collisions become important, however, when the plasma
density is higher. For such cases, the collision time is smaller than
the mean lifetime of field lines, meaning that the particles will
have several collisions before escaping through the tokamaks wall.
To address these cases, we add a collisional effect to the tokamap
by including a noisy term in the field line mapping.

4. Collisional tokamap

In Fig. 6 we plot points that trace out the unstable manifold
for the collisional tokamap with P = 1 and ρm = 10−3. The main
effect of the collisional term is that particles no longer trace out
the unstable manifold W S (Σ) exactly, rather they disperse about
it. As the collisional displacement, ρm , gets larger, the dispersion
about W S (Σ) increases.

In order to describe this behavior quantitatively, we calculate
the dispersion D S1,S2 of the set S1 about the set S2, where S1 and
S2 are the sets of points that trace out the unstable manifold for
Fig. 7. (Color online.) Dispersion D as a function of the displacement parameter ρm .

the collisional and the collisionless tokamap, respectively. In [34]
D S1,S2 is defined as the average of the distances d(x, S2) between
the points x ∈ S1 and the set S2

D S1,S2 = 〈
d(x, S2)

〉
x∈S1

, (17)

where d(x, S2) = min{d(x, y), y ∈ S2}.
Fig. 7 shows the variation of the dispersion D S1,S2 as a function

of different values of the displacement parameter, ρm , yielding a
power-law description. Numerical fitting gives us the power-law
dependence:

D S1,S2(ρm) = ρα
m, (18)

with α = 0.30 ± 0.05.
We now qualitatively discuss the dependence of the constant α

on dynamical properties of the system. Suppose we take a small
set of initial conditions, S1, and follow the distribution of the cor-
responding orbit points with time. This distribution can be viewed
as a droplet in a flow converging towards the unstable mani-
fold [33]. The width ε of S1 will change due to two different
mechanisms: it will broaden due to collisions and contract along
the stable manifold due to the presence of the chaotic saddle. The
overall effect is that the droplet will converge to a narrow strip
centered at unstable manifold, but not up to infinite precision.
Collisions then have a diffusive effect that is visible only in small
scales.

In Fig. 8 we show the evolution of a set of initial positions for
the collisional tokamap (in red) and for the collisionless tokamap
(in blue). The distribution S1 traces out the unstable manifold, but
there is also a spreading due to collisions. We also observe that,
for the collisional case, the distribution covers the long filaments
of the unstable manifold much faster than for the non-collisional
case previously discussed.

To formulate this behavior, let us assume that the spreading
effect over the filaments can be described by (ε2

k + 2Dt)1/2, where
D is the diffusion coefficient of the collisional effect [33]. Likewise,
the contraction factor is represented by exp(−λt), where λ is the
Lyapunov coefficient along the stable direction. The time evolution
of the filament widths then reads

εk+1 = (
ε2

k + 2Dt
)1/2

e−λt . (19)

5. Conclusions

Plasmas confined in tokamaks with non-symmetric perturba-
tions are surrounded by a chaotic layer of magnetic field lines that
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Fig. 8. (Color online.) Evolution of a set of initial positions for (a) k = 2, (b) k = 10, (c) k = 20 and (d) k = 256, with ρ = 10−2 and P = 1. The red dots correspond to the
distribution of the collisional tokamap and the blue dots are the distribution of magnetic field (collisionless tokamap).
guide charged particles to the wall. Moreover, the particles are de-
posited on the wall following a fractal distribution attributed to
the field lines chaotic saddle in the chaotic layer surrounding the
plasma. We use the tokamap, an analytical two-dimensional sym-
plectic mapping, to obtain this chaotic saddle and the resultant
fractal field lines escape to the wall. This is expected to explain
the particle escape for low density plasma at the plasma edge.
However, when the plasma density is higher the collision time
is smaller than the mean lifetime of field lines, meaning that the
particles may experience several collisions before escaping to the
tokamak wall.

To investigate the influence of the collisions on the predicted
particle escape distribution, we added a collisional term to the
tokamap, assuming that collisions can be regarded as a noisy com-
ponent. Within this procedure we found that the main effect of
the collisional term is that particles no longer trace out the unsta-
ble manifold exactly, rather they disperse about it.

Furthermore, in order to describe this behavior quantitatively,
we studied the dispersion of a set of points that trace out the
unstable manifold for the collisional tokamap. We found that this
dispersion yields a power-law description in terms of the displace-
ment parameter. Moreover, we also discussed qualitatively the de-
pendence of the power-law exponent on the dynamical properties
of the system. Namely, we shown how a small set of initial con-
ditions converges towards the unstable manifold of a hyperbolic
point embedded in the chaotic region, forming highly convoluted
filaments. We found that the filament widths changed due to two
different mechanisms: the filaments broad out due to noise and
contract along the stable manifold due to the presence of the
chaotic saddle. The overall effect is that the droplet will converge
to the unstable manifold, but not up to infinite precision. Collisions
then have a diffusive effect that is visible only in small scales.

Generally, the average collision time depends on the plasma
temperature and density and can be considered as a time param-
eter that measures whether the chaotic sets are robust or not. If
the mean escape time of the field lines is larger than the parti-
cle collisional time, then the fractal structures can be considered
robust. Physically, this means that the majority of particles escape
through the unstable manifold before suffering a single collision.
However, if the mean time between particle collisions is smaller
than the mean escape time of field lines, the particles will expe-
rience several collisions before escaping to the tokamak wall. In
this case of small collision time, our result suggests a mechanism
to explain why particle collisions do not destroy the fractal struc-
tures (like magnetic footprints) observed in divertor plates due to
escaping tokamak particles.
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