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L Chôné, P Beyer, Y Sarazin, G Fuhr, C Bourdelle, S Benkadda

To cite this version:
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L-H transition dynamics in fluid turbulence simulations with neoclassical
force balance

L. Chôné,1, 2 P. Beyer,1 Y. Sarazin,2 G. Fuhr,1 C. Bourdelle,2 and S. Benkadda1
1)Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20,
France
2)CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France.

Spontaneous transport barrier generation at the edge of a magnetically confined plasma is reproduced in flux-
driven three-dimensional fluid simulations of electrostatic turbulence. Here, the role on the radial electric
field of collisional friction between trapped and passing particles is shown to be the key ingredient. Especially,
accounting for the self-consistent and precise dependence of the friction term on the actual plasma temperature
allows for the triggering of a transport barrier, provided the input power exceeds some threshold. In addition,
the barrier is found to experience quasi-periodic relaxation events, reminiscent of Edge Localised Modes.
These results put forward a possible key player, namely neoclassical physics via radial force balance, for the
Low- to High-confinement regime transition observed in most of controlled fusion devices.

Regions of reduced energy and particle diffusion are
observed in magnetic fusion devices such as tokamaks
and stellarators1,2. These regions are named transport
barriers and are equivalent to those observed in atmo-
spheric and oceanic turbulent flows3. The high confine-
ment mode or H-mode barrier, which forms at the edge
of magnetic fusion devices was the earliest observed and
the most studied4. Since then many theoretical models
have been devoted to the study of this very promising
confinement mode2. These theories share in common the
fact that the potential structure that is observed in the
H-mode regime, and which gives rise to a strong negative
radial electric field, is indeed responsible for the turbu-
lence suppression by shear effects in the E × B velocity
at which fluctuations are convected5. On another hand,
theory shows that the plasma gradients in the H-mode
barrier are limited by pressure driven ballooning modes
leading to relaxation oscillations of the barrier, known
as Edge-Localized Modes (ELMs)6. These violent relax-
ation events bear similarities with solar flares7. The tran-
sition from a regime of low confinement to one of high
confinement at the edge, or L-H transition occurs when
externally injecting power into the plasma and is gener-
ally followed by quasi-periodic relaxations of the barrier,
which is a characteristic of the ELMs. The importance
of achieving high confinement makes H-mode one of the
ITER baseline scenarios, however it could be seriously
hindered by the harmful nature of ELMs to the wall com-
ponents. Because of this, the understanding of the cre-
ation, control and removal of external transport barriers
is of crucial importance to the success of magnetic fusion.
Although the L-H transition has been widely observed
and the conditions for triggering H-mode have been ex-
tensively studied experimentally, theoretical understand-
ing of the underlying physical mechanisms remains unre-
solved2,8–17. In particular, although the self-generation
of sheared flows and subsequent turbulence reduction is
observed in the few flux-driven three-dimensional (3D)
plasma edge turbulence simulations addressing this is-
sue, no clear transition is reported14–17. When reported,
such a transition is neither well characterised nor prop-

erly understood18.
In this letter we present non-linear results of flux-

driven resistive ballooning simulations of the plasma
edge, taking into account the effect of neoclassical friction
on the E×B flow. Such an effect has recently been ex-
plored in the frame of a 1D predator-prey model19. Here
it is found by means of 3D simulations that competition
between the neoclassical friction and zonal-flows (ZFs)
allows for the existence of two distinct regimes depend-
ing on the imposed heat flux. These regimes correspond
to a low-confinement state dominated by turbulence, and
above a certain input power, a state of improved confine-
ment with the onset of a transport barrier. In contrast to
previous investigations, radial and temporal variations of
the friction coefficients are retained. This feature is found
to have a strong impact on the dynamics of the system,
so that taking it into account is necessary to obtain gen-
eration of this transport barrier. A reduced 1D model
which reproduces qualitatively the 3D result is derived,
and 1D simulations show intermittent bursts of turbu-
lent flux corresponding to relaxations of the established
barrier.

In the following simulations, the non-linear evolution
of electrostatic resistive ballooning turbulence is studied
with the EMEDGE3D code20 in toroidal geometry with
circular, non-diverted poloidal cross-section. The dimen-
sionless coordinates (x, y, z) of the 3D toroidal geometry
refer to the minor radius, and the poloidal and toroidal
angles, respectively. The code solves standard reduced
MHD (RMHD) equations20–23, in the limit of large as-
pect ratios and with the slab approximation:

∂t∇2
⊥φ+

{
φ,∇2

⊥φ
}

= −∇2
‖φ−Gp+ ∂xFneo + ν⊥∇4

⊥φ ,

(1)

∂tp+ {φ, p} = δcGφ+ χ‖∇2
‖p+ χ⊥∇2

⊥p+ S .

(2)

Equations (1,2) correspond respectively to the charge
and energy balance, the two fields φ and p being the
electric potential and the total pressure. Poisson brack-
ets {φ, ·} = ∂xφ∂y · −∂yφ∂x· account for the advection
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by the electric drift velocity. ∇‖ and∇⊥ are respectively
the parallel and perpendicular gradients with respect to
the magnetic field lines and G is a toroidal curvature op-
erator. ν⊥ is the classical viscosity, while χ‖ and χ⊥
account for parallel and perpendicular collisional heat
diffusivities. S (x) is a heat source term (all numerical
results presented here are from flux-driven simulations).
Here, the novel term in Eq. (1) is ∂xFneo

(
φ̄, p̄
)
, where

φ̄ = φ − φ̃ and p̄ = p − p̃ indicate flux-surface averaged
quantities, with φ̃ and p̃ the associated perturbations.
It ensures that the poloidal flow relaxes towards its ex-
pected neoclassical value on collisional time, as a result of
the friction between trapped and passing particles. The
key steps for the derivation of Fneo are outlined in the
following (for the full derivation, see24).

The system (1,2) is dimensionless: time is normalised

to the interchange time, τint =

√
R0Lp√
2cS0

, with cS0 =√
p0/n0mi the typical acoustic speed and Lp the typical

pressure gradient length. The perpendicular length scale

is the resistive ballooning length, ξbal =
√

ρη‖
τint

Ls

B0
, with

the magnetic shear length Ls being the parallel length
scale. The fields φ and p are normalised respectively to
B0ξ

2
bal

τint
and ξbalp0

Lp
. Because the MHD model does not sep-

arate density and temperature, an assumption is made
that the former is constant n = n0, therefore ps = n0Ts.
Furthermore, the ratio between ion and electron temper-
atures is kept constant Ti = εTTe.

The starting point of this reasoning is the radial force
balance equation which, if we consider toroidal rotation
to be negligible (generally true in the absence of torque
injection), can be written thus:

∂xφ̄+
εT

εT + 1

τintp0
ξbalLpen0B0

∂xp̄ = ūy. (3)

In the fluid model, the poloidal velocity is
not normally constrained, however an expres-
sion emerges from the neoclassical theory:
ūneoy = εT

εT+1
τintp0

ξbalLpen0B0
K (νi,∗) ∂xp̄

25,26. The col-

lisionality is expressed as a function of p̄ (since
νi,∗ ∝ nT−2i ∝ p̄−2, at constant density), and a heuristic
closure24 allows for this constraint to be taken into
account in the fluid model through a friction term which
enforces relaxation towards this equilibrium:

Fneo = −µneo (p̄)
[
∂xφ̄−Kneo (p̄) ∂xp̄

]
, (4)

where Kneo = εT
εT+1

τintp0
ξbalLpen0B0

[K (νi,∗)− 1], and µneo =

αneoµi

[
q(x)
ε(x)

]2
, with q (x) the safety factor and ε (x) the

inverse aspect ratio. The Hinton and Hazeltine formula is
used to determine K (νi,∗) for all neoclassical regimes25,
and an approximate fit for µi is found in24. One can
see in Eq.4 that alleviating the assumption of constant
density would actually reinforce the coupling near the
edge where n is small. For instance, under the assump-
tion that n ∝ T , the friction term in Eq.4 would have a

similar structure with ∂xp̄ replaced by ∂xp̄/
√
p. As a con-

sequence, the neoclassical drive would be even stronger
at the plasma edge.

Under the assumptions of the electrostatic RMHD
model, ZF amplitude is likely overestimated. Indeed, the
competition between Reynolds and Maxwell stresses is
unaccounted for, and so is the saturation by collisional
friction on the ZF (both effects are discussed in28). A fac-
tor αneo > 1 is therefore introduced to recover the com-
petition between zonal and neoclassical flows expected
during the L-H transition (here αneo = 6 is sufficient to
achieve this). Note that the value of αneo affects the mag-
nitude of the transition threshold, but not the qualitative
behaviour of the system. Importantly, two mechanisms
can lead to sheared radial electric field here: on the one
hand, pressure gradient and radial electric field get cou-
pled, allowing for a possible positive feedback loop, and
strong radial variations of Kneo will result in a sheared
neoclassical flow on the other hand.

The simulations are carried out in the range of minor
radius between 0.85 < r/a < 1. This main simulation
domain is bounded by buffer zones where the turbulence
is artificially stabilised by large χ⊥ and ν⊥ coefficients.
The precise value of χ⊥ in the buffer zones is chosen so
as to maintain a gradient of order unity (in the buffers,
Q0 = Qcoll = −χ⊥∂xp̄). All simulations are flux-driven
with a volume source S (x) located in the x < xin buffer
zone, imposing the heat flux Q0 =

∫
S (x) dx. Here x

denotes the normalised minor radius (to ξbal), xin and
xout are the positions of the main simulation domain’s
boundaries, with xout corresponding to r = a. The
safety factor is hyperbolic, between q (xin) = 2.5 and
q (xout) = 3.5 . The set of parameters used here is repre-
sentative of medium to large present tokamaks. In partic-
ular, collisionality is in the range 10−1 < νi,∗ < 102 (near
banana to collisional regime), which is in agreement with
what is observed in L-mode at the edge27, and happens
to be where K (νi,∗) varies the most rapidly. This is
with the exception of ν⊥ and χ⊥, chosen large enough
to ensure damping at sub-Larmor scales. Here we take
χ⊥ = ν⊥ = 0.93 and χ‖ = 2 (these values are normalised

to ξ2bal/τint in the perpendicular direction and L2
s/τint in

the parallel direction). Several simulations are done in
the range of 5 ≤ Q0 ≤ 30 to study the impact of this
friction on confinement.

The results on figure 1 show the confinement deterio-
ration expected in L-mode with increasing heat flux for
Q0 < 14, followed by a sharp increase and again a de-
terioration if the source is increased further. This corre-
sponds to strong changes in the profiles of the flux-surface
averaged pressure and poloidal component of the drift ve-
locity ūEy = ∂xφ̄. Indeed, when the heat flux is below
Q0 = 14, the pressure profile is roughly a straight line
and the poloidal velocity is low with minor radial corru-
gations. Above the threshold, the poloidal velocity profile
is strongly modified. In the main part of the simulation
domain it stays at low amplitude and changes sign, but
between 0.95 < r/a < 1 it peaks strongly, generating a
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FIG. 1. (Color online). Evolution of the mean energy con-
finement time (a), defined as τE = 1/Q0

∫ xout

xin
p̄ dx, and the

volume-averaged mean pressure gradient (b) as functions of
the heat source amplitude in the 3D case. Error bars on (a)
and (b) show the standard deviation in time. (c) and (d)
show mean profiles of the pressure and the E × B velocity.
The vertical dashed lines on (c) and (d) mark the LCFS. All
time-averaged quantities are taken over a statistically station-
ary period of the order of 1000 τint.

localised sheared flow. Note that throughout the domain
below the threshold and outside the barrier above, the
turbulent flux is one order of magnitude larger than the
collisional flux. The stabilising effect of sheared flows
on turbulence, which is a well documented result from
reduced models to gyrokinetic simulations12,14,29–31, al-
lows for steeper pressure gradients to be reached, giving
a pedestal-like pressure profile. In the higher range of
heat flux, the poloidal velocity tends towards the force-
balance value, ūEy = Kneo∂xp̄ , while it departs from
it for the lower sources. Furthermore, the shape of the
velocity profile shows good qualitative agreement with
measurements of the radial electric field in H-mode32–34,
even though the radial electric field at the last closed
field-surface (LCFS) is not constrained by scrape-off layer
physics in the model (i.e. Er is allowed to vary freely
inside the buffer zones. Notice however that Er be-
comes positive in the outer buffer region, as expected
in the SOL). We also show that the mean value of the
poloidal velocity at the peak, and consequently the asso-
ciated shear, is significantly increased (here about 3 times
larger) when Kneo and its radial variations are taken into
account (see Fig. 2). Correspondingly, the friction coef-
ficients, as calculated from the equilibrium pressure in
the code, show large changes before and after the tran-
sition. In particular, as shown on Fig. 3 (left panel) the
maximum value of K goes from −1 for Q0 < 14 (transi-
tion from collisional to plateau neoclassical regime) to 0
(plateau regime) after the transition. Moreover, after the
transition the profile of K is ranging from −2.1 to 0 with

a strong gradient at the position of the barrier. Corre-
spondingly, the value of µneo doubles at the position of
the barrier after the transition (as illustrated in Fig. 3,
right panel), and shows a very sharp gradient outward
from this position. This supports the fact that the ra-
dial and temporal variations of both coefficients should
be taken into account, K in order to allow for strong
enough shear flows, and µneo in order to allow for com-
petition between neoclassical friction and ZF.
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FIG. 2. (Color online). Comparison of the friction-imposed
drift velocity ūEy = Kneo∂xp̄ with K (νi,∗) = 0 and K (νi,∗) =
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trates that the barrier could not form or maintain itself if
the radial and temporal variations of K where not taken into
account.

0.90 0.95 1.00
r/a

−2.0

−1.5

−1.0

−0.5

0.0

〈 K
(ν

i,
∗)
〉 t

0.90 0.95 1.00
r/a

0.0

0.2

0.4

0.6

0.8

1.0

〈µ
n
eo

〉 t

Q0 = 10

Q0 = 20

FIG. 3. (Color online). Profiles of K (νi,∗) and µneo shown
for two values of input power, before and after the transition.

Smooth approach of the threshold has shown dithering
of the poloidal velocity, reminiscent of the I-phase in slow
L-H transitions35–40. This is clearly seen when looking
at the time evolution of the poloidal velocity and the
associated shearing rate, as shown on Fig. 4. Before the
formation of the transport barrier the normalised velocity
shear fluctuates in between 1 and 2 . An increase to
twice this value is then observed shortly after 1 ms, soon
followed by a sharp fall back to its original level. This
is repeated twice, each time towards higher velocities,
before a new state is reached at t > 2 ms and a barrier is
established. As can be seen on the lower panel of Fig. 4,
the radial maximum of the velocity corresponds to the
peak observed in Fig. 1d in the case of a steady barrier.

It is instructive to realise that similar characteris-
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when crossing slowly the threshold. Upper panel shows evolu-
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with black wedges pointing at the repeated drops during the
transition. Lower panel time evolution of the poloidal veloc-
ity radial profile, with the white dashed line highlighting the
position r/a = 0.95. Here the statistically stationary phase is
not shown.

tics can be obtained with a reduced 1D model, pro-
vided neoclassical friction is properly accounted for. This
model derives from Eqs. 1-2, when only retaining res-
onant modes, characterised by k‖ = 0, and one single
poloidal mode of wave vector k. Then, p and φ can be
decomposed into their equilibrium and fluctuating parts:
f = f̄ + f̃eıky + c.c., with f = (p, φ). The following
four-fields 1D system is obtained41:

∂tp̄ = −ık∂x
(
p̃φ̃∗ − p̃∗φ̃

)
+ χ⊥∂

2
xp̄+ S (x) , (5)

∂tūEy = ık∂x

(
φ̃∂xφ̃

∗ − φ̃∗∂xφ̃
)

−µneo (ūEy −Kneo∂xp̄) + ν⊥∂
2
xūEy, (6)

∂tp̃ = ık
[
φ̃ (∂xp̄− κ)− ūEyp̃

]
−αp|p̃|2p̃+ χ⊥∂

2
xp̃, (7)

∂tφ̃ = ı

(
g

k

p̃

p̄
− kūEyφ̃

)
− αφ|φ̃|2φ̃+ ν⊥∂

2
xφ̃, (8)

The αf |f̃ |2f̃ terms account for saturation via mode
coupling. Here t is normalised to 1

ωS
= mi

eB0
, x to ρS =

√
mikBTe

eB0
.

In this case, partial stabilisation of the turbulence is
achieved above a certain threshold of the injected power,
as illustrated on Fig. 5, showing that this reduced model
still contains the minimal elements to reproduce this be-
haviour. In the parameter range considered so far, it
turns out that for low fluxes, the collisional and turbulent
fluxes are of the same order of magnitude (Fig. 5, right
panel). This 1D model offers the advantage of allowing
for long simulation runs, on several energy confinement
times. Especially, when the input power exceeds the L-H
transition threshold, a complex dynamics emerges: here
turbulence is not steadily suppressed but shows instead
quasi-periodic bursts. Interestingly the pseudo-period
increases with the injected power (see Fig. 6). This
behaviour bears similarities with type-III ELMs, which

were already suggested to be governed by the resistive
ballooning instability16,20,30,42,43.
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FIG. 5. (Color online). Evolution of the confinement effi-
ciency as a function of the heat source amplitude in the 1D
case.
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In conclusion, 3D nonlinear simulations of flux-driven
edge turbulence are performed in a fluid model including
neoclassical friction via a heuristic closure. They have
shown the existence of two distinct regimes of confine-
ment depending on the imposed heat flux. The transi-
tion scenario from one regime to another is the follow-
ing: increasing the input power leads to more violent
avalanches, triggering strong stabilising ZF. The result-
ing steepening of the pressure gradient further generates
a sheared mean flow via the neoclassical friction. If the
shear becomes strong enough to prevent a new burst, the
barrier locks on because of this positive feedback loop be-
tween pressure gradient and poloidal flow, mediated by
neoclassical terms. If not, it collapses in a strong trans-
port event, starting another similar cycle. This can be
repeated before the transition, resembling limit cycle os-
cillations observed in L-I-H transition experiments35–40.
The stability of this barrier over long periods has been
explored by means of a reduced 1D model, which repro-
duces the general behaviour of the 3D model, and re-
vealed the existence of relaxations reminiscent of type-III
ELMs.
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Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H.
M. Mayer, D. Meisel, E. R. Müller, H. Murmann, H. Nieder-
meyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G.
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